

Game Development with Godot
4 and C#

First Edition

Develop a dynamic 3D game while exploring a
robust node system, level design, and
animations

Kati Baker

Game Development with Godot 4 and C#

First Edition

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmi�ed in any form or by any means,
without the prior wri�en permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Portfolio Director: Rohit Rajkumar

Relationship Lead: Rohit Rajkumar

Project Manager: Sandip Tadge

Content Engineer: Shazeen Iqbal

Technical Editor: Tejas Mhasvekar

Copy Editor: Safis Editing

Indexer: Pratik Shirodkar

Proofreader: Shazeen Iqbal

Production Designer: Shantanu Zagade

Growth Lead: Namita Velgekar

First published: December 2025

Production reference: 1241225

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-80512-413-9

www.packtpub.com

https://www.packtpub.com/

I would like to dedicate this book to my wife and all who supported me in
this process called writing.

– Kati Baker

Contributors

About the author
Kati Baker is a Staff Engineer who has been creating games since her
first game jam in 2016. She is a programmer by trade and has spent
part of her professional career in education, working as an Outreach
Coordinator for NASA and a CS Innovator for 4-H. In both, she’s
worked with students to encourage learning in STEM, specifically
computer science. In her spare time, she runs a monthly game jam,
Godot Wild Jam, and completes her own personal projects. She has
also given talks at leading conferences for her work with Godot. She
is a big believer in continuing to learn, no ma�er what. Kati earned
her Bachelors of Science in Computer Science from West Virginia
University, and currently resides in West Virginia with her partner
and plants.

I would like to thank my wife for continuing to nudge me in the
direction I needed to get this book out the door. Huge thanks to my
friends and colleagues for supporting me in this endeavor and
occasionally asking me when it would be available for them. Here you
are! The biggest thank you to every single person who has ever
participated in the Godot Wild Jam. You’re all Wildlings in my heart.
Special thanks to Hayden Edwards and Shazeen Iqbal for their
valuable edits. To Joanna of the Chickensoft community for valuable
technical feedback. To Rohit Rajkumar, thank you for the kind words

of encouragement on the final stretch when it felt impossible. To the
entire Packt team for giving me this opportunity and continuing to
believe in my ability to do this.

About the reviewer
Isaiah Jamiel is a software engineer and game developer based in
Jakarta, Indonesia. He currently works as a .NET Software Engineer
at Indocyber Global Teknologi, contributing to enterprise
applications involving data integration, backend systems, and legacy
application maintenance. Isaiah has prior experience as a full-stack
developer and has led independent game development projects
through NTC Studio, where he built games using Godot and C#. He
holds a bachelor’s degree in Cyber Security from Bina Nusantara
University and has received recognition for his work in game
development competitions.

Contents
Preface
Part I: Understanding the Godot Engine and C#

1. Introducing Godot 4
Free Benefits with Your Book
Technical requirements

Installing Godot 4
Downloading the .NET SDK
Choosing an environment

What is the Godot Engine?
How does the Godot Engine function?
Navigating the Godot Engine

Scene/Import docks
Viewport and screen buttons
FileSystem dock
Inspector/Node/History dock
Bottom panel

Summary
2. Understanding How C# Works in Godot

Technical requirements
Reviewing the changes to C# in Godot 4
Setting up your C# environment

Configuring Godot for C#
Configuring your IDE for Godot debugging

Creating your first scenes and C# script
Creating the Player node structure
Adding a script to our Player Scene
Creating the World scene node structure

Summary
3. Organizing and Setting Up a Project for a 3D Action Game

Technical requirements
Structuring our project

Coupling and cohesion
Structure by asset
Structure by feature

What’s good for Godot?
Setting up a GitHub repository

Creating a GitHub account
Downloading GitHub Desktop

Importing starter assets
Importing the character model
Importing textures

Pushing to GitHub
Previewing the game
Summary

Part II: Creating a Simple 3D Action Game
4. Creating Our Player Controller

Technical requirements
Creating our player’s node structure

Navigating the Viewport
Configuring our camera

Providing movement to our player
Attaching a script
Adding a test floor

Moving the camera
Setting Mouse Mode
Panning with the mouse
Creating a conversion function
Clamping the camera
Moving the player with the camera

Adding walking and jumping animations with the animation tree
Navigating animation trees
Creating the AnimationTree node

Walking
Jumping

Expanding our jumping animation
Adding a run ability

Mapping our run ability
Registering run input
Adding the running animation

Summary
5. Creating Our Game World

Technical requirements
Importing World Assets
Adding collisions

Manually adding collisions to imports
Generating collisions after placement

Designing our first level
Creating movement with shaders
Preparing game physics
Creating and gathering collectibles

Setting up our model
Adding a script to the mushroom object
Checking player collisions
Creating multiple collectibles

Adding rain to our level
Summary
Further reading

6. Developing and Managing the User Interface
Technical requirements
Introducing control nodes
Creating a UI theme

Navigating the Theme Editor
Creating our first UI type
Reusing our saved theme

Adding a main menu
Adding our buttons
Embedding our main menu
Connecting menu buttons
Adding a transition animation to the menu

Designing a Settings screen
Adding our volume sliders
Designing our volume sliders
Navigation on the Settings screen

Adding a Close button
Summary

7. Adding Sound Effects and Music
Technical requirements
Understanding Godot’s audio nodes

Working with audio buses
The Master audio bus
Adding audio buses
Implementing audio effects

Adding sound effects to the UI
Setting up the AudioStreamPlayer node
Coding our sound effects

Adding music to our scenes
Making our settings page functional

Tying Music to our MusicSlider
Tying sound effects to SFXSlider

Summary
8. Adding Navigation and Pathfinding

Technical requirements
Understanding navigation nodes
Creating a navigation mesh
Creating an NPC
Adding autonomous movement

Adding marker nodes
Adding code to World.cs
Adding code to ForestDweller.cs
Creating groups in Godot

Summary
Part III: Expanding Our 3D Action Game and Additional Resources

9. Setting Up Lighting in Godot
Technical requirements
Discovering Godot’s lighting nodes
Adding a DirectionalLight node
Utilizing OmniLight nodes
Creating a day/night cycle
Summary

10. Understanding Accessibility and Additional Features
Technical requirements
Understanding accessibility

Revamping our Settings UI
Updating our Settings scene
Programming our tabs

Discovering Save systems
Saving with JSON
Saving with binary serialization
Saving with ConfigFile

Adding additional features
Using tweens
Switching scenes

Summary
11. Exporting Your Game

Technical requirements
Understanding what exporting is
Downloading export templates
Exporting our game to Windows
Uploading our game to itch.io
Summary

12. Contributing to Godot and Additional Resources
Technical requirements
Navigating the Godot Engine repository
Contributing to Godot

Developer contributions
Reporting bugs
Understanding open issues

Documentation contributions
Reviewing useful plugins

Installing plugins
Camera Shake for C#
GodotSharpExtras
Godot Ink
Godot Firebase
Aseprite Wizard
Piskel

Highlighting Godot communities and creators
Godot Wild Jam
Chickensoft
GDQuest

Summary
13. Next Steps as a Godot Developer

Technical requirements
Participating in game jams

Submitting a game
Exploring the challenge list

Understanding juice
User interface
Player-based
Expanding our world
Cameras
Shaders
Miscellaneous

Summary
14. Unlock Your Exclusive Benefits

Appendix: Transitioning from Godot 3 to Godot 4
Technical requirements
Analyzing engine version changes
Discovering what’s in Godot 4

2D and 3D rendering
TileSet and Tilemap editors
Shaders and VFX
Editor UX

Preparing for an upgrade
Creating a backup
Updating nodes

Tweens
Tracking time

Renaming shaders
Using the project upgrade tool

Importing the project
Get This Book’s PDF Version and Exclusive Extras

Other Books You May Enjoy
Index

Preface

Godot is an open source game engine that enables developers to
create interesting and unique projects, mainly video games. While
Godot has a built-in scripting language called GDScript, C# has, over
time, gained more support, especially in Godot 4.

Dedicated to Godot 4 and C#, this book guides you through creating
a 3D project in Godot, using C# as the programming language from
start to finish. In writing this book, I wanted to share my personal
experience with Godot alongside my professional experience as a C#
developer.

In this book, we will first discuss the relationship between the two
and then spend time se�ing up our development environment. After
that, we’ll look at how best to organize our project to keep the assets
and scripts as orderly as possible.

Once we have our development environment configured, we’ll
explore the various components to create a 3D action game. Some of
those components will include a player controller, animations, user
interface, sound effects, and pathfinding. Within each section, we’ll
discover more features built into Godot’s engine and how best to
leverage those features in our project.

As we wrap up a vertical slice of our 3D action game, we’ll look at
third-party plugins and applications that can improve our

development life cycle. The last step for our project will be to export
the game and publish it on the itch.io platform.

Finally, we will explore outside the game engine into the Godot
community and see what other resources are available to Godot
developers, such as C#-specific communities and other notable
creators in the space.

Most of the features included in this book have been updated to
Godot 4.4, and although the UI may change, the idea behind the
usage can still be applied to future versions of Godot.

https://itch.io/

Who this book is for
This book is for developers and creators seeking more knowledge
about the Godot Engine, specifically using Godot with C#.
Experience with an object-oriented programming language is
required to get the most out of this book.

What this book covers
Chapter 1, Introducing Godot 4, introduces the Godot Engine,
including what makes it a viable game engine choice, and specific
features that make it a worthwhile choice in game development
projects.

Chapter 2, Understanding How C# Works in Godot, walks through the
relationship between the Godot Engine and C#, as well as se�ing up
a development environment to work fluidly between the two.

Chapter 3, Organizing and Se�ing Up a Project for a 3D Action Game,
explores two different schools of thought when it comes to
organizing a project for the rest of the book.

Chapter 4, Creating Our Player Controller, focuses on the player
controller, creating animations, and keying controls to player
actions.

Chapter 5, Creating Our Game World, illustrates the importance of
level design, how to import a variety of assets, and how to add
collision meshes to them for use in a level.

Chapter 6, Developing and Managing the User Interface, spends time
creating a main menu to access the level and adding some simple
animations to the UI.

Chapter 7, Adding Sound Effects and Music, explores sound buses
and how to use them for either sound effects or music, and brings
them together for UI, player actions, and level music.

Chapter 8, Adding Navigation and Pathfinding, implements
navigation and pathfinding for a non-player character to
autonomously move throughout the level.

Chapter 9, Se�ing Up Lighting in Godot, discusses lighting in a
variety of ways, specifically for global illumination and interior
lighting.

Chapter 10, Understanding Accessibility and Additional Features,
reviews the project so far and highlights accessibility components,
expanding the UI to accommodate a Se�ings screen.

Chapter 11, Exporting Your Game, walks through the process of
exporting the project to multiple platforms and how it can be played
by people outside the project.

Chapter 12, Contributing to Godot and Additional Resources, dives into
how to contribute to the engine and provides feedback on issues
while also highlighting third-party plugins to utilize in the project.

Chapter 13, Next Steps as a Godot Developer, explores the wider
Godot community outside the engine, specifically C#-focused
spaces.

Appendix: Transitioning from Godot 3 to Godot 4, provides insight on
whether creators should upgrade to Godot 4, the benefits of doing
so, and the process to upgrade.

To get the most out of this book
Prior programming knowledge is beneficial in ge�ing the most out
of this book. It’s targeted at programmers with some experience but

li�le to no Godot experience. No other technical set up is required as
this book will walk you through everything you need.

To complete the exercises and examples provided in this book, you
will need to download and install Godot Engine 4.5.1. You can
download Godot Engine 4.5.1 (.NET version) from the official
website at
https://godotengine.org/download/archive/4.5.1-stable/.

Download the example code files
The code bundle for the book is hosted on GitHub at
https://github.com/PacktPublishing/Game-Development-
with-Godot-4-and-C-Sharp. We also have other code bundles
from our rich catalog of books and videos available at
https://github.com/PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here:
https://packt.link/gbp/9781805124139.

Conventions used
There are a few text conventions used throughout this book.

CodeInText : Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user
input, and X (formerly Twi�er) handles. For example: “Again, when
await is read within an async method, it will not move on to the next

https://godotengine.org/download/archive/4.5.1-stable/
https://github.com/PacktPublishing/Game-Development-with-Godot-4-and-C-Sharp
https://github.com/PacktPublishing
https://packt.link/gbp/9781805124139

line of code until the code to the right of the await word has finished
executing.”

A block of code is set as follows:

public void OnPlayClicked()
{
 GD.Print("Play button clicked");
 animPlayer.Play("MenuTransition");
 audioPlayer.Play();
 HideMenu();
}
public async void HideMenu()
{
 await Task.Delay(TimeSpan.FromSeconds(1));
 this.Visible = false;
}

Bold: Indicates a new term, an important word, or words that you
see on the screen. For instance, words in menus or dialog boxes
appear in the text like this. For example: “Enable the Autoplay
checkbox and, most importantly, set the Bus property to Music.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book or have any general feedback, please email us at

customercare@packt.com and mention the book’s title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of
our content, mistakes do happen. If you have found a mistake in this
book, we would be grateful if you reported this to us. Please visit
http://www.packt.com/submit-errata, click Submit Errata, and
fill in the form.

Piracy: If you come across any illegal copies of our works in any
form on the internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that
you have expertise in and you are interested in either writing or
contributing to a book, please visit http://authors.packt.com/.

Subscribe to Game Dev Assembly
Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new
newsle�er dedicated to everything game development. Whether
you’re a programmer, designer, artist, animator, or studio lead,
you’ll get exclusive insights, industry trends, and expert tips to help
you build be�er games and grow your skills. Sign up today and
become part of a growing community of creators, innovators, and
game changers.

https://packt.link/gamedev-newsletter

http://www.packt.com/submit-errata
http://authors.packt.com/
https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

Share your thoughts
Once you’ve read Game Development with Godot 4 and C#, we’d love to
hear your thoughts! Please click here to go straight to the
Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will
help us make sure we’re delivering excellent quality content.

Free Benefits with Your Book
This book comes with free benefits to support your learning.
Activate them now for instant access (see the “How to Unlock” section
for instructions).

Here’s a quick overview of what you can instantly unlock with your
purchase:

PDF and ePub Copies Next-Gen Web-Based Reader

Access a DRM-free PDF Multi-device progress

https://packt.link/r/1805124137

copy of this book to read
anywhere, on any device.

sync: Pick up where you
left off, on any device.

Use a DRM-free ePub
version with your
favorite e-reader.

Highlighting and
notetaking: Capture
ideas and turn reading
into lasting knowledge.

Bookmarking: Save and
revisit key sections
whenever you need
them.

Dark mode: Reduce eye
strain by switching to
dark or sepia themes.

How to Unlock
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require one.

http://packtpub.com/unlock

————————— Part 1 —————————

Understanding the Godot Engine
and C#

In this first part of the book, you’ll discover the Godot Engine, how it
functions, and its relationship to the C# programming language.
We’ll explore creating a development environment, using Visual
Studio Code, and create our own player controller with animations
and controls. At the end of this part of the book, you’ll have a solid
foundation for how Godot operates and a rudimentary player
controller. Lastly, you’ll have a be�er understanding of the
components needed for a clean project structure.

This part of the book includes the following chapters:

Chapter 1, Introducing Godot 4
Chapter 2, Understanding How C# Works in Godot
Chapter 3, Organizing and Se�ing Up a Project for a 3D Action
Game

1

Introducing Godot 4

Welcome to Game Development with Godot and C#, and thank you for
taking this journey with me! You’ve probably picked up this book
because you’ve heard about Godot and want to explore it as a viable
game engine alternative. Or you’ve heard of Godot 4’s latest release
and want to know what all the hype is about. Or you’ve been using
Godot and want to change how you use it. Or maybe you’ve never
heard of Godot until now, but you know how C# works. No ma�er
the reason, this book will teach you how to use C# in Godot and
have fun while doing it.

We’ll start this chapter by ge�ing acquainted with the Godot Engine
and se�ing up the tools we’ll need for the exciting 3D action-
adventure game we’ll be making throughout the rest of the book.
This chapter will serve as a foundation for ge�ing comfortable in
Godot and understanding in a broad sense what the engine is
capable of feature-wise.

So, in this chapter, we will cover the following topics:

What is the Godot Engine?
How does the Godot Engine function?
Navigating the Godot Engine

Free Benefits with Your Book
Your purchase includes a free PDF copy of this book along
with other exclusive benefits. Check the Free Benefits with Your
Book section in the Preface to unlock them instantly and
maximize your learning experience.

Technical requirements
All the code examples for the entire book can be found on GitHub
here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Plus, to follow along with the book, you will need the following
tools:

The latest version of Godot (currently 4.5.1) installed
The latest version of Microsoft’s .NET SDK (currently .NET 8.0)
An IDE (we will be using Visual Studio Code)
C# extension as provided by Microsoft
Knowing C# is not a prerequisite to utilizing this book, but
knowing programming fundamentals and the Object-Oriented
Programming (OOP) paradigm will be essential

Let’s get those tools now.

Installing Godot 4
Download the Godot Engine, specifically Godot 4, by accessing this
page: https://godotengine.org/download. The web page will

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-
https://godotengine.org/download

auto-detect your operating system and present you with two
download bu�ons – just Godot Engine and Godot Engine - .NET.
We want the second option, which has C# support, so make sure to
click that one.

Figure 1.1: The download web page for Godot 4

After downloading the correct version of Godot, all that’s left to do
is extract the .zip file. Godot does not include an installation, so once
the file is extracted, you can run it immediately with no additional
setup.

Next, we will look at downloading the .NET SDK.

Downloading the .NET SDK
Alongside the .NET version of Godot, you also need to have
Microsoft’s .NET SDK. This will provide you with the Microsoft

Build Engine (MSBuild) to compile the project we will build.
MSBuild is what creates our .csproj file within our project and
allows us to compile our code.

Download the latest stable version of Microsoft’s .NET SDK from
here: https://dotnet.microsoft.com/en-us/download.

Choosing an environment
While Godot has a built-in editor for writing scripts, it’s best to
download your own integrated development environment (IDE) or
code editor when using C#. The biggest difference between an IDE
and a code editor is that an IDE has more tools available for
development, whereas a code editor is a text editor for code. For
more information on supported IDEs and editors, visit
https://docs.godotengine.org/en/stable/engine_details/d
evelopment/configuring_an_ide/index.html.

For this book, I will be using Visual Studio Code (a code editor) and
will walk you through how to set it up. You can download Visual
Studio Code here: https://code.visualstudio.com/. Once
installed and launched, you will need to configure it for use with
Godot. Click on the Extensions bu�on on the left-hand side (it’s
right below the Debug bu�on that looks like a li�le bug with a play
bu�on). The bu�on that has the blue two on it in Figure 1.2 is the
bu�on to click.

https://dotnet.microsoft.com/en-us/download
https://docs.godotengine.org/en/stable/engine_details/development/configuring_an_ide/index.html
https://code.visualstudio.com/

Figure 1.2: The toolbar on the left-hand side of Visual Studio Code

After opening the Extensions page, type C# in the search bar, and
you should see a list of options come up. Select the one that says C#,
making sure the creator is Microsoft, and click Install.

Figure 1.3: The C# extension page

Note

If you are using a different editor than Visual Studio
Code, you can download the C# extension using this
link:

https://marketplace.visualstudio.com/items?
itemName=ms-dotnettools.csharp.

With all the tools needed to begin programming in Godot, let’s take
some time to understand what the Godot Engine is and why it’s
useful.

What is the Godot Engine?
The Godot Engine is a robust game engine that’s ideal for creating
2D and 3D games. It was created in 2007 by Juan Linietsky and Ariel
Manzur; however, since its inception, many people have contributed
to the engine, as you can see from the long, awesome list on the
GitHub repository:
https://github.com/godotengine/godot/blob/master/AUTHOR
S.md.

Since it is free and open source, it comes at no cost to you as a
developer, and the source code is readily available to be modified or
updated at any time. The license that Godot operates under is the
MIT License, which is also commonly known as the Expat License; it
puts development in the hands of developers and leaves it there.

In terms of function, Godot is flexible and easy to set up. You can
download the engine on a USB drive and run it with no problem. If
there’s a feature you don’t like, you can modify the source code
yourself, or if there is a feature you like, you can continue building
on it and open a pull request about it to the Godot community. If

https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://github.com/godotengine/godot/blob/master/AUTHORS.md

you like it, you may find yourself becoming a contributor to the
engine too, which we’ll discuss in Chapter 12.

The biggest drawback to this system, however, is that if a feature is
not frequently used or kept up with development, it can be removed
in a newer version. A good example of this is VisualScript, a visual
scripting language for Godot, which was removed in Godot 4. The
team has said that this may be reconsidered, but only as an
extension, not a core feature of the engine. While this may seem like
a negative, it can be a great boon in keeping the community engaged
by providing valuable feedback on valued features.

Don’t let that draw you away from Godot, though, as it has a myriad
of powerful features that make it a versatile engine. The following
are just a few of those key features and how they make Godot
convenient to use:

Lightweight: Downloading the Godot Engine is not only easy,
but it’s fast due to it being so small. The entire engine is barely
over 100 MB, and as I said, it can fit on a USB drive.
Supports multiple languages: Program in the integrated scripting
language GDscript, use the recently added C# bindings, or any
other number of programming languages supported by the
community, such as Rust.
Git-friendly: Godot uses a friendly and readable filesystem that
makes it easy to create and maintain projects in places such as
GitHub.

Overall, the Godot Engine is an excellent choice for both beginner
and veteran developers. It’s intuitive and easy to pick up, but due to
its open development nature, features and upgrades are constantly

being implemented to provide Godot depth and a wide array of
capabilities that compete with other commercial engines.

With a be�er understanding of some of Godot’s benefits, let’s take a
look at how it functions as a game engine.

How does the Godot Engine
function?
What makes Godot unique is its scene system and node structure.

The scene system is the space where nodes are housed. Each scene is
made up of nodes, and everything created in Godot is derived from
the Node object. Nodes are the building blocks of our scenes and
how objects are created in Godot.

The scene structure becomes a tree of nodes, as shown in Figure 1.4:

Figure 1.4: Scene hierarchy in the Godot Editor with an example node tree

For example, let’s say we want to create a first-person character. It
requires a�ributes such as a kinematic body, collision shapes, and
cameras (if you don’t know what these are, that’s okay, we’ll learn
about these nodes in later chapters).

Each of these a�ributes would be a different node and, collectively,
they would make a scene. In the previous figure, there are seven
nodes in the current scene. Depending on the type of node that’s

present, there is a different icon next to the node’s name. Let’s break
down each of these nodes, starting from the top and working our
way to the innermost node:

Player: The root of this scene tree, the Player scene, is the Player
node, which has a running figure icon to indicate that it’s a
CharacterBody3D node.
CollisionShape3D: This node provides a collision layer to our
player object and is a child of the Player node.
Body: The Body node is a PackedScene with nodes for the
Player model a�ached to it, including all the pieces needed to
animate it. This node has the symbol for a Node3D object (a red
circle), but also notice the clapperboard icon to the right of the
name of the node. This means this node is a PackedScene node,
which means it’s serialized. Serialization here means all the
information relating to the scene has been converted from data
types to bytes efficiently.
Camroot, h, and v: These next three nodes are all Node3D
objects and were created to control the position and movement
of the Camera by script. There is a script a�ached to the
Camroot node with a li�le scroll icon that’s next to the node
name. Camroot is the base of the camera; h and v represent
horizontal and vertical movement, respectively.
Camera: The innermost nested node is Camera, which has a
camera icon next to it and allows us to create either a first- or
third-person view of the player, depending on where we
position the Camera.

Using the scene system allows developers to easily create prefabs
out of nodes. There’s no additional step to save this scene as a
prefab; we can simply take Player.tscn with all these nodes on it and
drag and drop it into another scene. This ability is the biggest
distinction Godot has from other game engines, because it allows
fast prototyping.

With the scene structure in Figure 1.4, we can see some important
pa�erns that you may or may not be familiar with. Let’s briefly cover
them here:

OOP: Another way to think about the scene system is in terms
of Object-Oriented Programming (OOP). When a system, or
language, is OOP, it means that everything is derived from
objects, and within those objects, you have your a�ributes and
can modify them within the object. If you’ve used an OOP
programming language before (such as C#), then transferring
that knowledge to Godot will be very intuitive. We see this in
the scene structure in Figure 1.4 as well as the fact that
everything in the scene derives from one object, a node.
Inheritance: The other piece of Godot that goes together with
the OOP paradigm is inheritance. Inheritance is just what it
sounds like – an object inherits a�ributes from another object.
Just like in our previous node tree, each node below another
node inherits from its parent node.
Polymorphism: Another important concept to know when
using Godot is polymorphism. To understand how this works
in Godot, let’s consider a new scene that our player might pick
up called Item. In the Item scene, we’ll have a shape, collision,

and the item model. If we wanted to have other item types have
the same base properties, we could extend the Item scene to be
used by any type of Item we wanted. While it may not be clear
here, we will use this concept in Chapter 5 when creating our
world.
Composition: The last idea we’ll briefly discuss is composition,
although it is not featured in Figure 1.4. This is something Godot
does extremely well and should be used whenever possible. It
goes hand in hand with an idea we’ll discuss in Chapter 3,
which is cohesion and coupling. Let’s use an enemy as an
example. Say we want our player to have Health and Armor.
The Health would be its own scene, as would the Armor. These
scenes would be named HealthComponent and ArmorComponent ,
respectively. Then, whenever we wanted to add either Health or
Armor to an enemy, we could a�ach HealthComponent or
ArmorComponent without needing to recreate everything. If this is
still confusing to you, you can read more about it here:
https://docs.godotengine.org/en/stable/getting_star
ted/introduction/godot_design_philosophy.html.

Now that we’ve got a brief understanding of how the Godot Engine
works, let’s start navigating through it.

The next section will take some time to explain each component of
the editor and their names. We’ll also briefly discuss how each of
those components is used in a project.

Navigating the Godot Engine

https://docs.godotengine.org/en/stable/getting_started/introduction/godot_design_philosophy.html

When you first launch the Godot Engine, you’ll be greeted by the
Project Manager screen, as shown in Figure 1.5:

Figure 1.5: The Project List screen when launching Godot

Here, you can create, import, rename, remove, or delete projects.
Click the New bu�on and choose a name for the project. Godot will
make sure you choose an empty folder, so all our project files will be
housed in one location.

Once a project is created, Godot will take you to the editor screen.
The default layout looks like this:

Figure 1.6: The Godot Editor in use

We’ll go over each section individually.

Scene/Import docks
The Scene/Import dock (1 in Figure 1.6) sits in the top-left corner of
the engine, right below the menu bar. There you’ll see two tabs –
Scene and Import. We saw a close-up view of this dock in Figure 1.4
when talking about Godot’s node structure and scene system.

The default view of this dock is on the Scene tab, which shows the
node structure of the current scene open in the Viewport. Selecting
2D or 3D from the screen bu�ons (3 in Figure 1.6) changes the views
accordingly; as seen in Figure 1.6, the 3D view is selected.

Within the 3D view, you can select a specific axis to view objects on
by clicking either the colored X, Y, or Z axes on the axis gizmo that
lives in the top right corner of the Viewport. You can also click and
drag the axis gizmo to view objects at a specific angle or at the
intersection of two planes.

The second tab in this dock is the Import tab. As you might expect,
it’s related to examining the specific properties of resources.
Resources are everything from 3D models to music to user interface
images. Depending on the type of asset it is, there will be different
properties to adjust and change as needed for your project. At the
bo�om of the Import tab, there is a Reimport bu�on for when
you’ve made changes to an asset and need to reimport it with
different se�ings.

Viewport and screen buttons
The Viewport (2 in Figure 1.6) is in the center of the screen and the
largest part within the Editor. This is where you’ll see the results of
the scenes that you create.

At the top is a screen navigator (3 in Figure 1.6) where you can
toggle between the 2D, 3D, Script, and Asset Library screens.
Clicking Script will show the scripts available in the opened scene,
and clicking the AssetLib bu�on will take you to Godot’s Asset
Library, where you can find useful third-party plugins or create your
own to be added there!

FileSystem dock
The FileSystem dock (4 in Figure 1.6) sits in the lower left-hand
corner of the Viewport and represents the file structure of your
project. Godot and its community don’t have a recommended file
structure when creating projects, mainly because there are no
restrictions when structuring them, but they have some general
information about how Godot interacts with the project structure.

You can find more about it here:
https://docs.godotengine.org/en/latest/tutorials/best_p
ractices/project_organization.html#organization.

The example structure in Figure 1.7 is a common one that’s used in
other game engines. While it’s a viable format, we’ll discuss other
ways to structure your project in Chapter 3.

https://docs.godotengine.org/en/latest/tutorials/best_practices/project_organization.html#organization

Figure 1.7: An overview of the file structure I use for my Godot projects and will use for this book’s
project

The only general rules when it comes to creating your file structure
are as follows:

Use pascal_case for folder names and filenames
Use SnakeCase for nodes and scenes

Include an addons folder for plugins and other third-party pieces

Though there is no standardized way to structure a project in Godot
– it should be whatever works best for you – make sure to keep these
rules in mind when creating your own file structure.

Inspector/Node/History dock
The Inspector dock (5 in Figure 1.6) has three tabs:

Inspector: By default, this is the visible tab. Here, you can see
the details and properties of a selected node, including its scale,
transform, and rotation. The information listed here will vary
based on the type of node selected, but it will be an extremely
useful space to reference as we work in Godot.
Node: Much like the Inspector, this tab shows the signals you
can implement based on the selected node, and provides a space
to manage your groups. Signals and groups will be components
we cover in Chapter 4.
History: This tab is exactly what you’d expect it to be. It’s a
history of the actions you take in the project. You can limit the
actions to be tracked by scene or globally. For example, if you
moved an object in a scene, the History tab would add a log
line. This would track the change much like you can do in a
document. It’s a convenient tool for understanding what actions
you took during any given development session.

Bottom panel

The final panel we’ll cover is the bo�om panel (6 in Figure 1.6). This
panel has multiple bu�ons running along the bo�om of it:

Output: Provides a log of debug statements, errors, and
warnings.
Debugger: This is where you’ll see more detailed error
messages and can monitor resource usage.
Audio: This is where you can add audio buses, apply audio
effects, and augment the levels of each audio bus.
Animation: The animation player allows you to preview
animations, add bezier curves, and manage other animation
components.
Shader Editor: Here, you’ll write your shaders. Godot uses a
shader language very similar to GLSL, so if you are already
familiar with it, it will be easy to transfer to Godot.
MSBuild: This is the Microsoft Build Engine, and you can build
your C# project from here. You can also see any warnings or
errors when the MSBuild occurs.

With that, you have learned what the main components of the Godot
Engine interface are and how they work together. While we didn’t
create anything within this project, this will be the project we use
throughout the rest of the book.

Summary
In this chapter, you learned what the Godot Engine is and some of
its history. You also learned about the different parts of the Godot
Editor and how each of them functions individually. Now that

you’re familiar with the various pieces of the Godot Engine, we can
look at how C# functions in Godot.

In the next chapter, we’ll discuss how C# behaves in Godot,
including some of the unique rules that we’ll need to follow for the
programming language. At the end of the chapter, we’ll create a
simple 2D script in C# to be�er understand the workflow of C# in
Godot.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

http://packtpub.com/unlock

2

Understanding How C# Works in
Godot

In this chapter, we will take a moment to discuss the interlinking of
Godot’s C# API and the C# language, as there are some important
parts to be aware of when creating C# scripts that are unique to
Godot, as there are with any C# bindings. We’ll also configure Godot
to improve our workflow, and then finish the chapter by creating
our first C# script.

The goal of this chapter is to become comfortable with the process of
creating C# scripts and a�aching them to nodes, as well as
understanding the relationship between the nodes and C# scripts.
Understanding these components will be foundational for moving
forward with more advanced topics as we progress through each
chapter.

So, in this chapter, we will cover the following topics:

Reviewing the changes to C# in Godot 4
Se�ing up your C# environment
Creating your first scenes and C# script

Technical requirements
For this chapter, the technical requirements will be the same as in
Chapter 1.

All the code from this chapter is available in the GitHub repository
here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Reviewing the changes to C# in
Godot 4
Before jumping into the additional setup required for C#, we will
cover some specific details about the relationship between C# and
Godot 4. If you’re new to Godot, these changes may not mean much
now, but we’ll highlight their benefits:

C# support is now provided through the .NET SDK rather than
the Mono SDK. This is beneficial for the following reasons:
There’s only one framework to install to begin work in C#
Godot 4 uses the latest .NET SDK, allowing users to have
greater access to C# features, such as providing access to class
libraries and the C# compiler
As C# and the .NET SDK were both created and designed by
Microsoft, this guarantees first-class support for its users.

So, the migration from Mono to .NET is a huge upgrade that comes
with Godot 4.

Godot signals generate C# events, which we’ll be discussing in
more depth in Chapter 4. If you are a native C# user coming to

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-

Godot, then you’ll probably be accustomed to creating events to
handle input and data. This prior knowledge of events in C#
makes using signals in Godot more intuitive as a C# developer.
Now, many Godot API functions have been renamed to match
.NET naming conventions. This means style guides for C#
scripts in Godot are more aligned with the standard which uses
PascalCase in their naming conventions for variables, functions,
etc. within the programming language.
More examples of C# scripts are being made available in the
Godot documentation, as well as a page to highlight the
differences between GDScript and C# in Godot, which means
switching to C# in Godot will be easier than ever before.
Since Godot moved to the .NET SDK, the official C# debugger is
now available to Godot, which makes debugging easier and
more developer-friendly.

For further details about the mentioned changes as well as
additional ones, visit this page:
https://godotengine.org/article/whats-new-in-csharp-
for-godot-4-0/.

While this is a high-level overview of engine changes and may only
intermi�ently impact us throughout the book, it’s still good to be
aware of, especially if you are coming from a previous version of
Godot.

Now let’s take some time to set up our C# environment with Godot.

Setting up your C# environment

https://godotengine.org/article/whats-new-in-csharp-for-godot-4-0/

In the previous chapter, we took the time to download the .NET
version of Godot, install a code editor, and install the C# extension
for our code editor to provide C# support. With our selected code
editor (Visual Studio Code) installed, we need to configure Godot to
recognize and open Visual Studio Code when editing C# scripts by
default, rather than opening Godot’s editor.

Configuring Godot for C#
To make sure the Godot editor is configured to open scripts with our
IDE of choice by default, follow these steps:

1. Open the Godot project that we created in the first chapter.
2. Click the Editor bu�on in the top-left menu bar. Then, click

Editor Se�ings.
3. On the left of the Editor Se�ings page, scroll all the way down

until you see Dotnet. Under this option, there should be two
se�ings – Editor and Build. Click Editor.

4. In the Editor options, you should see an option called External
Editor, set to its default se�ing of Disabled. Click the arrow
next to the word Disabled, and you should be prompted with a
drop-down menu of all the IDEs you can set to open when you
edit C# scripts. If you followed the steps from the previous
chapter’s Technical requirements section, then you should see
Visual Studio Code, or whatever IDE you’ve selected, in the
drop-down.

Figure 2.1: The Editor Se�ings screen with the Editor options selected

Once selected, Godot will now open C# scripts in the chosen IDE,
which makes editing them super convenient. There’s no need to
restart the project or the engine to make these changes persist.

Configuring your IDE for Godot
debugging
Now that Godot is aware of the IDE we’re using, we can make sure
our IDE knows what type of code to compile. Note the instructions
in this section assume that you’ve followed the technical setup from
the previous chapter and therefore have Visual Studio Code
installed:

1. Open Visual Studio Code.
2. Click File in the top-left corner, select Open Folder…, then

browse to the folder that holds our project (mine is normally
located in the Documents folder). Then, click Select Folder on the
project folder that you navigated to, not any of its sub-
directories. This will add all the sub-directories and files to be
opened in Visual Studio Code.

3. From the left-hand navigation toolbar, shown in Figure 2.2, click
the run and debug icon (second from the bo�om). This will
open the debugging window.

4. From here, select the text that says create a launch.json file, as
shown in Figure 2.2.

Figure 2.2: Creating our launch.json and task.json files in Visual Studio Code

After clicking this bu�on, a new file should be created named
launch.json . This will be in the vscode folder, which you can see on
the left-hand side of Visual Studio Code next to our toolbar in Figure
2.3.

Figure 2.3: The newly created launch.json and tasks.json files in Visual Studio Code

Note

Visual Studio Code should automatically take you to
the screen with the launch.json file present. If not, you
can click the Explorer bu�on from the Visual Studio
Code toolbar (this is the first icon in the toolbar shown
in Figure 2.2).

The launch.json file tells Visual Studio Code how it should handle
our Godot project. If your launch.json file does not look like what is
shown in the following code block, then replace the content with this
code:

{
 "version": "0.2.0",
 "configurations": [

 {
 "name": "Godot Book",
 "type": "coreclr",
 "request": "launch",
 "preLaunchTask": "build",
 "program": "${env:GODOT4}",
 "args": [],
 "cwd": "${workspaceFolder}",
 "stopAtEntry": false,
 }
]
}

Let’s break down what each component within it means:

version : The version is arbitrary and only ma�ers for internal
use. The default is 0.2.0 , but you may set it to whatever you’d
like.
configurations : We can set up the launch.json file to launch our
project in a variety of ways. For now, we’ll only have one
configuration, which will launch the main scene - any scene that
is set as the main scene in the Project Se�ings of Godot - and
a�ach a debugger. This allows us to set breakpoints and utilize
other debugging tools in our C# code.

Then, within the configurations array, we see a list of variables:

name : This is the name of the configuration and what will appear
above the debugger when the run and debug bu�on from the
toolbar is selected. I’ve named mine Godot Book , as shown in
Figure 2.4.

Figure 2.4: The name of the launch.json configuration above the debugger

type : This determines the debugger being used. We are using
the coreclr .NET debugger.
request : The request property is either launch or attach . A launch
configuration is more about starting our project in debug mode,
whereas an attach configuration is about connecting Visual
Studio Code’s debugger to a process already running. We have
it set to launch , since that’s what we want to do with our project.
preLaunchTask : This calls the name of the listed task in the
tasks.json file, which we’ll be creating right after this. The name
build corresponds to the build in the tasks.json file, which will
build our project before launching it.
program : This tells the debugger what program or file to execute
with the debugger. There are two ways to fulfill this property:
The first, and probably best, way is by adding an environment
variable called GODOT4 to your system. Windows users should do
the following:

1. Click the Windows bu�on and begin typing the word
environment .

2. Click the Edit the System Environment Variables option.
3. From the first window that appears, click Environment

Variables.

4. From the second window that appears, System variables,
click the New bu�on.

5. In the Variable name box, type GODOT4 .
6. Click Browse File and browse to the Godot executable. This

is the same path that we can also copy and paste into the
program property.

7. Click OK. A machine reboot and/or a restart of Visual
Studio Code and Godot may be required.
The second way, which can work in a pinch, is to copy the
path to the executable. In this instance, we would want to
copy the path to the Godot executable that we downloaded
to run the engine. The reason the second way may not
always be the best is when the executable is moved, the
program property requires an updated path. Note that you
will need to replace the backslash with forward slashes.

args (short for arguments): This property is a list of arguments
to pass into our program for debugging. You can find a list of
available optional arguments here:
https://docs.godotengine.org/en/stable/tutorials/ed
itor/command_line_tutorial.html#command-line-
reference.
cwd (short for current working directory): This property tells
Visual Studio Code where to find dependencies and other files.
stopAtEntry : This property is either true or false and will stop the
program if this configuration property is set to true.

Note

https://docs.godotengine.org/en/stable/tutorials/editor/command_line_tutorial.html#command-line-reference

If you ever forget what each of these properties means,
you can always refer to this list or hover over the
property in your launch.json file, and Visual Studio
Code will tell you. You can also find more in-depth
information on Visual Studio Code’s website here:
https://code.visualstudio.com/docs/editor/de
bugging#_launchjson-attributes.

Now we’ll take some time to create the tasks.json file. We mentioned
this file when talking about the preLaunchTask property in the
launch.json file. To get started, let’s do the following:

1. Click the Terminal bu�on in the top-left corner of Visual Studio
Code.

2. Next, click the Configure Tasks... bu�on at the bo�om of the
menu.

3. After that, we’ll see a drop-down menu in the search bar in the
top middle of the screen, as shown in Figure 2.5.

Figure 2.5: The drop-down menu after clicking Configure Tasks...

4. Click Create tasks.json file from template.
5. Here, we’ll be given a list of templates to choose from. Choose

.NET.

https://code.visualstudio.com/docs/editor/debugging#_launchjson-attributes

Afterward, a tasks.json file should be created and opened in your
.vscode folder within your project. We don’t need all of the code
that’s already in here. In fact, let’s replace it with this code:

{
 "version": "2.0.0",
 "tasks": [
 {
 "label": "build",
 "command": "dotnet",
 "type": "shell",
 "args": [
 "build"
],
 "problemMatcher": "$msCompile"
 }
]
}

Much like the launch.json file, the tasks.json file is an array of tasks
that will be executed at various times, depending on when we tell
them to. Tasks are typically things such as testing, deployment, or, in
our case, for building our project. Now that we have a tasks.json file,
let’s step through what each property means:

label : This is the name of the task. Here, it’s build (the same as
in preLaunchTask). This is an arbitrary identifier, and you can
rename it based on the purpose at hand.
command : This is the name of the command to execute. We want to
run .NET.
type : This property determines the type of task, which can either
be shell – referring to a shell command – or process – meaning a
process to be executed. We have chosen shell .

args : Again, this refers to the argument we’re passing in to build
the project.
problemMatcher : This property scans the tasks.json file output
(which is our compiled project) and makes sure that there are no
errors. The $msCompile listed is the C# and Visual Basic compiler
that we want.

With Visual Studio Code configured, we can begin to work in the
engine and create our first scenes and C# script. This will be a
beginner-level example of the engine and will include more engine
navigation on top of the components listed.

Creating your first scenes and C#
script
In this short example, we’ll be creating two scenes – one is a Player
scene and the other is our World scene where the player will reside.
The player will be able to move left and right, jump, and dash.

So, with Godot set up, let’s start by creating a simple script. In the
Scene dock, you’ll see an option to create your Root node. Here, we
can see four options:

2D Scene: This will create a scene with a generic 2D node as the
root
3D Scene: This will create a scene with a generic 3D node as the
root
User Interface: This will create a scene with a generic Control
node as the root

Other Node: This allows you to browse for a specific node to set
as the root of the scene

At some point, we’ll be creating all of these scenes, but for now,
select Other Node.

Figure 2.6: Godot’s Scene dock

Now that our scene type is selected, we will start with creating the
node structure for the Player scene, since it has multiple
components. The Player scene is also going to be its own node in our
World scene, so it’s best if we create it first. Then, we can drop the
Player scene into our World scene, which we’ll create in Chapter 4.

Creating the Player node structure
After selecting Other Node, a new window will appear, as seen in
Figure 2.7, giving us the option to select the node we want to create
in the scene. This screen includes every type of built-in node that
Godot provides.

Figure 2.7: The Create New Node menu screen with search results on the word character

We need a node that can tell Godot that it is going to be a user-
controlled type of node. So, in the search bar, type character . You will
see the menu filter in real time. The two nodes that will be
highlighted here are CharacterBody2D and CharacterBody3D. Since
we are working in a 2D scene, we want to choose CharacterBody2D.

Select it and you will see a description of the node at the bo�om –
this is useful when you’re not quite sure what node you want or
need but have a general sense of its application. This node is a body
that has no physics, which means that any collision detection we
want to implement must be done in code.

Click Create and CharacterBody2D will be added to the Scene dock
like so:

Figure 2.8: Player node structure so far

Now, a small caution symbol appears to the right of the
CharacterBody2D node, as seen in Figure 2.8. Hover over it, and it
will show a node warning saying that this node needs a shape.
Without a shape, it cannot collide or interact with any other objects.
Here are the steps to add a collision to our character:

1. Right-click CharacterBody2D (not Node2D). Then, from the
drop-down menu, click Add Child Node.

2. Rather than searching for character , this time, search for shape .
The immediate results will be CollisionShape and ShapeCast
for both 2D and 3D, respectively.

3. Since we’re in a 2D scene, select CollisionShape2D . This shape will
allow us to provide collision bounds for our player’s
CharacterBody2D node.

Here, again, we see another caution symbol next to our newly added
CollisionShape2D node. This time, it’s a node configuration warning,
telling us a shape must be provided. This may be confusing since
we’ve added the correct node, but it’s only telling us that we’re
missing something in regard to the node. To fix this, do the
following:

1. Select the CollisionShape2D node and then look at the Inspector
dock on the right-hand side. We can see a list of properties for
CollisionShape2D , such as Shape, Disabled, and One Way
Collision.

2. Notice that Shape says <empty>. This is what we need to
provide to Godot so that the caution symbol will go away. Click
the arrow to show a drop-down menu, as shown in Figure 2.9,
and select New RectangleShape2D:

Figure 2.9: Selecting the shape for CollisionShape2D

After selecting this shape, you will see a small blue rectangle appear
in the Viewport with nine dots around the edges with one in the
center, as in Figure 2.10. You can use the scroll wheel on your mouse
or click the plus sign on the zoom panel that’s in the top-left corner
of the Viewport. Once you are about 200% or so zoomed in, the blue
rectangle (the collision shape that will be on our player) should be
visible.

Figure 2.10: Collision shape sizing in the Viewport

Note

It’s important to note that you should not resize the
collision shape with the Scale property of the

CollisionShape2D node in the inspector; rather, you
should use the dots that are on the collision shape
within the Viewport, or use the Size property.

Both options can be found under the Transform
heading in the inspector, but be aware that Scale and
Size are two different properties. The Size property is
be�er to use here.

We have one more node to add and then the node structure of our
Player scene is complete. So, right-click on our most recent node (the
collision shape) and click Add Child Node, but this time we are
looking for a Sprite2D node. If we click the Sprite2D node from the
scene hierarchy and then look to the inspector, we’ll see a Texture
property. By default, it will say <empty>. Click the drop-down
arrow next to <empty> and select Load. A new window should
appear, and the only option available to us is an icon.svg file.

The result will look like a block version of the Godot Engine icon. It
should appear in the Viewport after selecting it. Make sure the blue
collision shape edges and the size of the icon match up – we want to
be sure that the collision shape (the blue) lines up correctly with our
sprite (the Godot icon block). Be sure to resize the icon sprite by
using the small dots that are along the edges of the sprite, and the
result will look like Figure 2.11:

Figure 2.11: Our Sprite2D si�ing on top of our CollisionShape in the Viewport

After that, our Player scene is complete, and the scene hierarchy
should look like this:

Figure 2.12: The Player scene hierarchy

Another viable option if you want to see the collision boundaries
from CollisionShape2D on top of the sprite is swapping Sprite2D and
CollisionShape2D around in the scene tree. This would set Sprite2D as
the parent of CollisionShape2D .

Now, be sure to save the scene by going to Scene in the top-left
corner, clicking Save Scene As..., and naming it Player.tscn .

Note

.tscn is a test scene file format that represents an
individual scene in Godot. You can read more about it
here:
https://docs.godotengine.org/en/stable/engin
e_details/file_formats/tscn.html.

Adding a script to our Player Scene
With our final node added to the Player scene, we can now focus our
a�ention on making our player move.

To start doing this, right-click on CharacterBody2D in the Scene
dock, then click A�ach Script. A window will pop up to give you
some options before creating the script, as in Figure 2.13. The most
important thing to select here is the language. When using the .NET
version of Godot, you have the option of creating scripts in either
GDScript or C#; in our case, set Language as C#.

https://docs.godotengine.org/en/stable/engine_details/file_formats/tscn.html

Figure 2.13: The A�ach Node Script menu

A nice feature of Godot is that depending on the type of node we
a�ach a script to, we have some options for templates. As you can
see in Figure 2.13, for Template, we’re going to be using the Basic
Movement template that comes with the CharacterBody2D node.
The script will appear in the Viewport, but if you configured your
Editor se�ings as described at the beginning of this chapter, it
should automatically open in the editor you chose. You can also
double-click the script from the FileSystem dock and open it in an
editor of your choosing.

Let’s step through the script to understand how Godot interfaces
with C#. For the next couple of paragraphs, I will be referencing
Figure 2.14, which has the script that Godot automatically creates for
the CharacterBody2D node:

Figure 2.14: The script Godot creates by default for CharacterBody2D nodes

Starting with line 5 in Figure 2.14, this is where we create our class
with a couple of important details:

public partial class PlayerMovement : Godot.CharacterBody2D { //class

First, the name of the class must match the name of the script; my
script name in my FileSystem and on line 5 is PlayerMovement . After
the class name, you’ll see that the class extends a Godot class called
Godot.CharacterBody2D – you must extend the node that the script is
a�ached to. For example, if we had a�ached a script to our Sprite2D
node instead, it would say Godot.Sprite2D .

Note

As of Godot 4.2, you no longer need to write Godot
before the node you’re extending, as it will
automatically know that it should extend the class
from Godot.

The next few lines declare constants for player movement, which
creates things such as gravity and other static variables that will be
repeatedly used throughout the project.

Note

Gravity is set up in Godot’s Project Se�ings. You can
change this by going to Project | Project Se�ings |
Physics | 2D and changing the Default Gravity
property listed there.

At line 13, we get to one of the main function calls in Godot, which is
the _PhysicsProcess function. It looks like this:

public override void _PhysicsProcess(double delta) { }

This function happens at a fixed rate and maintains smooth physics
for our game. Plus, it’s called before each physics step, so it’s perfect
to use for our player when we need to process input actions that
correlate to the physics step.

Note

A physics step is when all the calculations for physics
in the game engine occur, such as movement and
collisions. The default number of physics steps is 60
iterations per second by default and is different from
the frame rate. You can read more about the physics
engine in Godot here:
https://docs.godotengine.org/en/stable/tutor
ials/physics/physics_introduction.html.

The parameter it takes is delta , which is the time that has elapsed in
seconds between each process call. We’ll be utilizing delta a lot to
move various objects in our world, including our player. In fact, you
should always include delta when making physics calls like this to
objects.

Within our _PhysicsProcess function, we have two if statements (lines
18 and 22) that check whether the player is in the air. Let’s break
down what’s happening in each of these if statements:

The first if statement is as follows:

if (!IsOnFloor())
velocity.Y += gravity * (float)delta;

https://docs.godotengine.org/en/stable/tutorials/physics/physics_introduction.html

Here, we’re saying that if the player is in the air, then we need to add
gravity to our player to put them back on the ground. The
IsOnFloor() function is part of the CharacterBody classes. It returns true
or false based on whether CharacterBody collided with another object
in the current frame. In our case, we only want the code to execute if
the function evaluates to be false .

If IsOnFloor() evaluates to false , which means our player is not on
the floor, then we’re going to accelerate the player’s movement on
the Y axis only.

Let’s break down the main variables:

velocity.Y : This is the variable that makes our character move in
the y direction, which is the Y component of velocity.
Remember, our velocity variable is a Vector3 and has a value for
the X axis, Y axis, and Z axis.
gravity : This adds the Gravity value from Godot’s Project
Se�ings to velocity.Y (the default is -9.8 , but this can be
changed).
delta : This property is the time elapsed between frames. It’s
important to keep our physics in line with delta because with
varying types of hardware, you still want your game to run
smoothly regardless of someone else’s frame rate. Here, the Y
component of our velocity is then multiplied by delta . Each time
this line executes, which is every time the PhysicsProcess function
is called, we are changing the player’s velocity over time. This is
how the player falls slowly to the ground rather than making
one immediate drop.

The second if statement looks as follows:

if (Input.IsActionJustPressed("ui_accept") && IsOnFloor())
velocity.Y = JumpVelocity;

If we’re on the ground, which means IsOnFloor() evaluates to true ,
and we’ve hit the jump bu�on, Input.IsActionJustPressed("ui_accept") ,
then we want to be propelled into the air. This function is one of
many convenient collision-checking functions that we will use when
creating our player controller later.

Let’s continue to break down the input actions in this script.

On line 22, and again on line 27, we see references to ui_accept ,
ui_left , ui_right , ui_up , and ui_down . They can also be seen here:

Let’s break this line down from left to right. Here, we’re declaring a
Vector2 variable called direction , and we’re assigning it to be
whatever the GetVector function returns. GetVector is a function from
the Input class. The Input class takes in all the keyboard and mouse
inputs and then processes them. GetVector specifically takes in string
names mentioned in the code block, such as ui_accept , ui_left ,
ui_right , ui_up , and ui_down .

These strings are defined in Godot’s input map. You can access the
input map by going to Project | Project Se�ings and clicking the
Input Map tab. By default, the input map does not show the built-in
mapped commands. Toggle the Show Built-in Actions bu�on, as
seen in Figure 2.15, and you should see a list of input mappings.

Vector2 direction = Input.GetVector("ui_left", "ui_right", "ui_up", "

Figure 2.15: The input map from Project Se�ings

These input mappings can be removed or altered. You can also
create new ones. Back in our script, we would check whether the
player hit the Shift key by using the name running when we check
for that player input in our script.

Back to Figure 2.14, the final line is a function called MoveAndSlide . This
function call is almost always the last one when it comes to updating
physics on a CharacterBody . What it does is tell Godot whether or not
our CharacterBody has had any collisions of any kind, and then
updates our velocity on that body.

Notice how in the template on line 37, the Godot template has set the
Velocity to velocity . The lowercase version of velocity is just a
placeholder variable, as declared on line 14. We update the Velocity

property of CharacterBody after all other input has been registered,
such as walking or jumping, before calling MoveAndSlide .

With the final line in the basic movement template reviewed, we can
go back to Godot and start building our second scene, the World
scene where our player will be housed.

Creating the World scene node
structure
With our Player scene set up and script a�ached, we can focus on the
World scene where our player will be placed. To start working in a
new scene, click the + sign next to the name of the scene right above
the Viewport. Once clicked, in the Scene dock, Godot will ask you
whether this is a 2D, 3D, or User Interface scene – we will be
selecting 2D.

Since the script a�ached to our player allows them to jump, let’s
create a quick floor to test it. Add a child node and search for
StaticBody2D . We want to use a static body here because it is a simple
body that doesn’t require constant physics updates.

Much like our player, the StaticBody2D node also needs a collision
shape. Add CollisionShape2D as we did before and then another
Sprite2D node. Then, for the Sprite2D node’s Texture property, set the
Godot icon and resize it to be stretched out like a thin floor.

Be sure to save the scene and name it World .

With both of our scenes set up, we can now add the Player scene to
the World scene. Click and drag the Player.tscn file from the
FileSystem dock and drop it into the Scene dock above. What we’re

doing here is nesting the Player scene within the World scene. If we
look at Figure 2.16, we can see how Player is underneath the World
node and has a variety of symbols next to it.

Figure 2.16: The World scene node structure

Let’s review the symbols:

The first one is a clapperboard. If we click it, it will open the
Player scene. This is a quick and easy way to know when a
scene has been nested inside another one.
The script symbol means we have a script a�ached to this scene.
This is referencing our Player.cs script that we created earlier.
The eye icon next to all nodes means they are currently visible
in the scene. If we want to toggle certain components to be
visible or not, then we could click the eye. The selected
component would be hidden from the Viewport and the open
eye would change to a closed eye.

Make sure to place the player above the floor so that when gravity is
applied to it, it will drop onto the solid surface below, as shown in

Figure 2.17. You can hit F5 or click the Play bu�on, which sits right
above the inspector.

Let’s go ahead and do that now to test the player and make sure the
logic of our player is working correctly.

Figure 2.17: Placing the player in our World scene above the floor

With our first project in Godot created and tested, we can move on to
the project we’ll be creating throughout the rest of the book. We’ll be
redoing most of these steps but using 3D nodes instead; this 2D
example was introduced to get you familiar with navigating Godot’s
various docks and node system.

Summary
In this chapter, we finished se�ing up our environment by
configuring Godot and selecting our external editor. We also
discussed some C# changes that came with the release of Godot 4.
This allowed us to create our first scene in Godot and get a bit more

familiar with the node system. Alongside that, we created our first
C# script and created a very rudimentary scene to test it out.

With the basics of how to create scenes and scripts, and combining
them both, out of the way, in the next chapter, we will look at how to
organize and structure our project.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

http://packtpub.com/unlock

3

Organizing and Setting Up a
Project for a 3D Action Game

In this chapter, we’ll be looking at how to structure our project, set
up a GitHub repository to utilize version control for our project, and
import the first set of assets we will need to get started creating our
player controller, which we’ll do in the next chapter.

When it comes to structuring projects in game development, there is
no one right way to do it. Over time, you oftentimes develop a
system that works well for you, or you adjust to what works best for
the tool or system you’re using at the time. With game development,
there are two main schools of thought, structure by asset and
structure by feature – we will consider each before deciding which
works best for Godot. After that, we will save our work remotely in a
GitHub repository to ensure we have a backup at the ready
whenever needed, should something happen to our devices locally
or we make changes that we would rather discard.

So, our goals for this chapter will be as follows:

Structuring our project
Se�ing up a GitHub repository
Importing starter assets

Pushing to GitHub
Previewing the game

Technical requirements
For this chapter, the technical requirements will be the same as in
Chapter 1.

All the code from this chapter will be available in the GitHub
repository here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Structuring our project
When it comes to organizing a project, there are a multitude of ways
to do it. Some developers keep things extremely organized and
know where every asset is, while others have a fast and loose
approach to project structure, which may work for them depending
on the project size. Regardless of the system used, the important
thing is to stay consistent with it.

In this section, we’ll talk about two different approaches to
structuring your project and which is preferred when it comes to
development in Godot. However, before we get into the two schools
of project structuring in game development, we should first discuss
what coupling and cohesion are.

Each of these ideas focuses on the way in which our code base is
wri�en. Since we’ll have multiple scripts throughout our project, it’s
important to decide early on how we’re going to write our code. Of

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-

course, when it comes to theory, it can sometimes be difficult to
apply, especially retroactively, but since we’re creating this for
educational purposes, we can practice implementing these ideas so
that in future projects, they come more naturally.

Coupling and cohesion
If you’ve done software development before or are studying
computer science in school, you may have heard the phrase “low
coupling, high cohesion.” The two terms have a direct correlation to
each other. Let’s explore how.

Coupling is the idea of how interdependent objects are to each
other. We can also think of coupling as how many required
connections one object has to another object, and how one object
relates to other objects outside of it. For example, let’s say we have a
Player object and then a World object with all the data about the
possible items the player can find. While it isn’t impossible to
manage, here are some reasons why designing an item system in the
World object might be difficult for long-term development:

It makes debugging and finding errors more difficult
If we wanted any variance in our items, we wouldn’t be able to
have that variety unless we duplicated the same code in the
World object, which makes the script cumbersome
Reusing any items in other ways becomes challenging since they
aren’t their own objects

Ideally, we would want each item to inherit from an abstract item
class that would trigger certain behaviors when the player triggers

them.

Using the example we discussed, we can think of coupling as the line
connecting Player and World in Figure 3.1:

Figure 3.1: An example of cohesion versus coupling

Cohesion, on the other hand, is about what an object does. Whereas
with coupling, we were looking at how an object functioned outside
itself, here, we want to see all the relationships inside a specific
object.

Going back to our example, the World script has all this information
about the various Player items, but there isn’t a need for the World
to know the details of these items. The World is not impacted by
what our Player has equipped. Also, if we wanted to create an
additional item for our Player, we would have to change many parts
of the World script, depending on how we implemented it, rather
than adding/modifying a function call from an item class.

Going back to Figure 3.1, objects A, B, and C are considered cohesive
as they are all the components within the World object, which could
be generating items or spawning platforms. These components
would be things the World needs and should know about versus
pu�ing items that appear in the World but function on the Player.

Ideally in development, we want high cohesion and low coupling.
This means our objects are isolated among themselves and very
rarely depend on other objects to function. This is super important,
especially as we iterate on certain objects. When objects are
decoupled, it’s easy to modify them as it doesn’t require changing a
bunch of other unrelated objects. A great way to keep objects and
scenes decoupled is through the usage of signals, which we’ll talk
about in a future chapter.

Knowing a li�le bit of this computer science theory will help us in
the long run when it comes to a multitude of things, one of them
being structuring our project. With an understanding between
cohesion and coupling complete, let’s turn our a�ention toward how
we can utilize these ideas in structuring our project in a way that’s
easy and manageable.

Structure by asset
As the heading suggests, structuring your project by assets would
mean that all the art is in one folder, all the music is in another, and
so on and so forth. This is a very common project structure and may
even be one you have used in the past with other game engines.

The benefit of structuring a project like in Figure 3.2 is that it’s easy
to find a specific file, since you put everything into its own folder.

Here, you can see how the Player scene and the Player script are
split up:

Figure 3.2: An example of structuring your Godot project by asset

A drawback, however, is when, say, you are working in the Player
scene, which uses the Player script, but you also need to tweak the
model or add a camera with its own script. Another drawback is that
when you have many scripts and scenes present, it can be difficult to
find the script you need to access. However, Godot has a very
convenient feature that allows you to go directly into the script from
the scene. When any scene is open, you can click the script icon for
any object that has a script a�ached to it, as shown in Figure 3.3:

Figure 3.3: The script icon in the scene dock to directly access a script

Now, let’s look at how we would structure our project by feature.

Structure by feature
Another way to consider organizing our project is by features. For
example, this would mean that everything involving our player
would be housed in one folder called player . This would include
everything from the model to the script controlling the character,
like in Figure 3.4:

Figure 3.4: An example of structuring your Godot project by feature

As well as a player folder, you can also see a world folder with the
relevant world-related files inside.

Between structuring by assets and structuring by features, there is
no right or wrong method – use what works best for you. However,
let’s look at what’s best when working in Godot.

What’s good for Godot?
With the way Godot is designed, many of the resources are
contained within the scene itself, which means it makes sense to group

everything in a project by feature. Going back to our Player example,
we would create a folder called player and put the scene, art, scripts,
and anything else relating to or called on by the player in there –
essentially, what we have represented in Figure 3.4.

Of course, there are some components in our game that will not be
impacted by either system. When we start designing systems in our
game, we may want to reuse them in some places. So, two additional
folders that will be beneficial in our structure will be the following:

lib (for libraries , though some folks also call it a utilities
folder): This is a place where we can reuse scripts or systems
that show up in multiple scenes
addons : For any third-party plugins or systems we may want or
need

So, moving forward, we are going to be utilizing the structure-by-
feature system. The reason we are doing this is because of how
Godot packages scenes, and it means we’ll have an easier time
navigating to the various components in each of our scenes.

After deciding on how we want to structure our project, it’s time to
set up a GitHub repository to keep track of all the changes to our
project.

Setting up a GitHub repository
Version control is an essential step in the software development life
cycle. If you’re unfamiliar with version control (also known as
source control), it’s the way in which we back up and maintain

projects. It’s not only for software projects but can be used for
documentation as well.

For the purposes of this book, we will be using Git through GitHub –
it’s free, there’s a lot of documentation for it, and it works super-well
with Godot. Let’s briefly break down the differences between Git
and GitHub. Git is the distributed version control software that
tracks changes between our files. GitHub, on the other hand, is a
web-based Git repository. GitHub adds many graphical features
when it comes to using Git and is where the Godot Engine code base
is housed.

Note

Git is an open source licensed version control, while
GitHub is maintained by Microsoft.

If you do not want to use GitHub or have a similar service that does
the same thing, feel free to use that instead. Some GitHub
alternatives include the following:

GitLab: Very similar to GitHub in the services it provides.
Bit Bucket: Used more for personal repositories. Created by Jira,
the very popular ticket system used in development.
SourceForge: An open source alternative to GitHub.
AWS CodeCommit: An option that naturally has a lot of AWS
integration.

Remember, all these alternatives use Git. If you don’t want to use Git
at all, some alternative version control software includes the
following:

Mercurial
Subversion
Azure DevOps

Finding the right version control for the project and workflow you’re
se�ing up is critical to the good management of a project, especially
when you’re working within a team. It’s not unheard of for a team to
switch version control systems, but it is a cumbersome undertaking
that can be avoided with some forethought. Be sure to pick the one
that best suits you and your team. For the purposes of this book and
project, all the version control will utilize Git through GitHub.

Now that we know more about version control, let’s get started in
creating and se�ing up GitHub.

Creating a GitHub account
If you already have an existing GitHub account, feel free to jump to
the Importing starter assets section, or, if you have an existing version
control setup that you’d rather use, feel free to use that.

To create a GitHub account, first, you need to access the website at
https://github.com/. Then, click the Sign up bu�on that’s in the
top-right-hand corner, as pictured in Figure 3.5:

Figure 3.5: The Sign up bu�on on the GitHub website

https://github.com/

You should then see a screen that looks like Figure 3.6; each option
will reveal itself on the screen as you progress through the form:

Figure 3.6: The Create Account form on GitHub

On this screen, enter your email address, and then create a GitHub
password and username.

Once done, click the Create Account bu�on that appears at the
bo�om of the form, and you’ll be taken to a new screen that will
require you to log in to your email and retrieve a code to validate
your credentials.

The last step is just a short questionnaire from GitHub, asking about
how you’ll use this service. Feel free to click the Skip
Personalization bu�on that’s at the bo�om of the screen for this
portion.

Once you have verified your account and successfully signed in,
you’ll be taken to the GitHub Dashboard, which should look
something like Figure 3.7:

Figure 3.7: The GitHub Dashboard screen

This can, at first, be overwhelming and confusing to navigate.
Thankfully, there is an application we’ll install that will make
interfacing with GitHub and its servers a lot easier.

Downloading GitHub Desktop
Now that we have created our GitHub account (or whichever
version control system we’re using), we are going to download
GitHub Desktop, an application that allows us to clone repositories
from GitHub and manage them in a local space on our machine. You
can think of GitHub Desktop as a middleman between your local
machine and the GitHub servers. Much like version control systems,
there are multiple ways to access and manage a repository. This one
is very user friendly and an excellent introduction to version control
if you are unfamiliar with it.

To download the software, go to https://desktop.github.com/.
From there, you should see a Download for Windows bu�on (it
may be something else, depending on the operating system you’re
using). Once downloaded, click the executable in your downloads
folder and follow the steps to complete installation.

https://desktop.github.com/

When GitHub Desktop is ready and launched, it will look very
similar to Figure 3.8:

Figure 3.8: The main GitHub Desktop screen after installation

At this point, you aren’t hooked into your GitHub account, so you
have no repositories on your local machine yet. We’ll be walking
through how to do this next.

In GitHub Desktop, click the File bu�on in the top-left corner, and
then click New Repository.... This will make a new window pop up,
such as that in Figure 3.9, asking you questions to provide
information about the repository:

Figure 3.9: The pop-up form when creating a new repository in GitHub Desktop

The most important ones are the name and the path, but let’s go
through each one:

Name: This is the name of the repository that you will see both
on GitHub and in your File Explorer. Do not have any spaces in
the name and make sure it’s something you’ll remember. I
named mine third-person-action-demo .

Description: The Description field is more of a note to yourself
and anyone you’ll be sharing the project with. It’ll be on GitHub
and let folks know the type of content that’s in it.
Local path: Just as the name indicates, this is where the local
copy of the GitHub repository will be on your machine. I
oftentimes select Documents and then a folder on my machine is
created, using the repository name. So, the location of my
project is ../Documents/third-person-action .
Initialize this repository with a README: This can be done if
you want to add more information for others about how to use
your project. This is important when sharing the project. If you
don’t create it now, you can create it later, so it’s completely
optional.
Git ignore: One of the nice things that GitHub will do for us is
ignore files we tell it to ignore, preventing machine-generated
files from being pushed to our repository. Which files GitHub
ignores will depend on the type of .gitignore file you create. If
you click the Git ignore drop-down menu, there is an option for
Godot. Feel free to select it, but since only one person will be
working in this repository, it isn’t completely necessary.
License: This determines how others can use, credit, or change
the work you’ve created. We’ll be selecting the MIT license,
which is also what the Godot Engine is under.

Now that we have our GitHub repository created locally, we can
start adding assets to it that we’ll be using for the project. These will
give us something to push to GitHub later in the chapter.

Note

Alternatively, since we are using Visual Studio Code
as our code editor, you can explore the option of
GitLens, which is a VS Code extension. While we
won’t cover its setup here, you can learn more about it
here:
https://marketplace.visualstudio.com/items?
itemName=eamodio.gitlens.

Importing starter assets
With our GitHub account and repository set up and our project
decided, we can turn to downloading the first set of assets that we’ll
be using for the next chapter.

The following is a list of items we’ll be downloading and importing
into our project:

A 3D model for our player from GDQuest
Textures for our world from Kenney Assets

Let’s look at how to import them.

Importing the character model
Since this book focuses on Godot and not 3D modeling, we will be
utilizing a free pre-made model for our project. This rigged and
animated model is provided by GDQuest and contributors.
GDQuest is an excellent resource for tutorials on how to create
games in Godot. The creator, Nathan, has been working hard to
provide quality content to the Godot community for years in the

https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens

form of YouTube tutorials and online courses. If you saw the blog
post from Godot about version 4’s release and watched the video,
that was GDQuest!

To access the 3D character, go to the following GitHub repository:
https://github.com/GDQuest/godot-3d-
mannequin/tree/master.

In the folder structure listed in the repository on this web page,
you’ll see there is a folder called godot-csharp . This is what we’ll be
accessing once we download it.

Above the folder structure, there are bu�ons called Go to file, Add
file, and Code, as shown in Figure 3.10:

Figure 3.10: The bu�ons available for accessing a repository on GitHub

Click the Code bu�on, which will open a submenu with more
options on how to copy the repository. We won’t be cloning the
repository, since we only need access to a few files. Instead, we can
simply click the Download ZIP bu�on, as seen in Figure 3.11:

https://github.com/GDQuest/godot-3d-mannequin/tree/master

Figure 3.11: The submenu for downloading the GitHub repository files

Locate the zipped folder on your system and extract it. You should
have an extracted folder called godot-3d-mannequin-master . We’re going
to navigate to the model by clicking into the following folders – so
click godot-csharp | assets | 3d | mannequiny .

You will find some material files and a .glb file. The .glb file is the
one we want. Click and drag it into our project by dropping it into
the filesystem dock in Godot. There will be a pop-up that says it’s
importing the asset; once it’s in your filesystem, double-click it to
open it in Godot. A new window should appear, and you’ll see a
blue mannequin, as shown in Figure 3.12:

Figure 3.12: The mannequin asset correctly imported into Godot 4

Don’t change any of the se�ings, as we only want to confirm that it
was imported correctly; just exit out of this window and save your
project.

Now we can move on to importing the textures used to paint the
level we’ll design.

Importing textures
The textures we’ll use for designing our world are provided by
Kenney Assets. This is a great resource when prototyping anything,
whether it’s 2D, 3D, or UI, and is provided entirely for free. While
there are a lot of packages to choose from on the site, we will be
using a texture package for the block-out level we’ll create.

You can access the textures we’ll be downloading at
https://www.kenney.nl/assets/prototype-textures. Once
downloaded, extract the file and drag the extracted folder into your

https://www.kenney.nl/assets/prototype-textures

Godot project, just like we did with our character model. I’ve
renamed the textures folder to env_textures to stay organized. I also
created a player folder and a world folder, which is what we’ll need
for the next couple of chapters. The filesystem structure can be
viewed in Figure 3.13:

Figure 3.13: The current filesystem setup we have, structured by feature

We’ve now successfully imported our starter assets! With these
couple of items in our project, we can start to build a player
controller and a world for that player to live in. Before we do that,
though, we need to push these changes to our GitHub repository to
make sure we don’t lose any progress, should something happen to
our machine.

Pushing to GitHub
If you’re familiar with the interface that is GitHub, feel free to skip to
the next section of this chapter. Otherwise, let’s get into how to
manage our work in relation to GitHub.

At this point, we’ve created a repository through GitHub that’s
currently on our local machine. At the top of GitHub, there should be
a black bar that says the current repository you’re in, the branch
you’re on (main is always the first and default branch when creating
a repository), and then the state the branch is in. You can see an
example of this in Figure 3.14:

Figure 3.14: The top menu bar of GitHub Desktop

As we can see in Figure 3.14, the current state of the branch shows an
arrow pointing upward that says Publish repository. This process is
called pushing to a repository, meaning the repository can be stored
on their servers. So, click the bu�on and a confirmation menu will
appear, as shown in Figure 3.15:

Figure 3.15: Confirmation menu when publishing a GitHub repository

The most important item in this confirmation menu is whether to
keep the code private or not, but let’s go ahead and break down
what each of these options are:

Name: The name of the repository that will be listed on
GitHub’s website and server. I’ve named it Third Person Action
Demo .
Description: A short blurb about the project. I’ve described it as
A Godot 4 C# project .
Keep this code private: This will determine whether the GitHub
project is available to anyone, regardless of whether they have a

GitHub account or not. The repository for this book is made
public, but you can opt to keep yours private or not.
Organization: These are groups on GitHub and multiple
GitHub projects can be placed under them. As this is a singular
project, it is not part of any organization.

We’ve already established a name and a description. Once we’ve
decided on our privacy se�ings, we can click Publish repository.
We’ve now successfully set up our GitHub repository on both our
local machine and the GitHub servers!

For future GitHub usage, and whenever you’re working in a team or
on someone else’s repository, the flow of GitHub is to almost always
do these steps in the following order:

1. Fetch: This will download any changes or updates that have
been made to your repository. This only really ma�ers if more
than one person is working in the same branch.

2. Pull: If there are any changes from someone else or if you
switched machines, you can pull those changes from the
repository down to your local machine.

3. Commit: After you fetch, you can commit any changes you’ve
created. This is where you basically mark what files you want
GitHub to save to its servers.

4. Push: Once commi�ed, you push the changes to GitHub’s
servers and have successfully saved your work.

There are all kinds of other options with GitHub too – there’s
branching, forking, managing merge conflicts, and so on. While this
may be overwhelming, we will only be working with the options just
listed and will not be creating multiple branches. However, if you

are familiar with version control and feel comfortable doing that,
then of course feel free to. If you want to learn more about GitHub
Desktop or troubleshoot an existing issue, check out the
documentation for GitHub Desktop at
https://docs.github.com/en/desktop.

Now, we’ll take a moment to discuss the game we’re going to create
and the various systems we’ll cover in Godot to make it.

Previewing the game
Currently, we have our project set up for version control and some
of the assets we’ll be using in the game. Now, let’s talk about the
game we’ll be making in the rest of the book.

We’ll be creating a 3D action-adventure game where the player will
be able to run around the world, interacting with and collecting
items. In the next two chapters, we’ll be creating our player
controller and designing our world. Yours won’t look exactly like
mine in Figure 3.16, but it will have the same player model that we
downloaded and imported, as well as the same assets you see in the
screenshot:

https://docs.github.com/en/desktop

Figure 3.16: A screenshot of the game we’re creating

Part 1 of the book is essentially the foundation, focusing primarily on
the player. In Part 2 of the book, we’ll be covering UI and also
looking at implementing audio, lighting, and pathfinding. Finally,
we’ll review our completed project and improve any components
that we think need to be improved/reworked.

With the game completed at this point in the book, we’ll spend the
rest of it looking beyond our project. So, in Part 3, we’ll look at how
to export and publish our game to others so they can access it. We’ll
also discuss how to contribute to the Godot Engine directly as well
as the documentation. Lastly, we’ll explore additional resources so
you can continue your Godot journey!

Then, we’ll be at the end of our adventurous journey of creating a 3D
action game in Godot using C#. While we won’t cover every system
in Godot, we will cover most of them. One of the best things about
game development is that even though you’ll be following a step-by-

step guide throughout this book, your game, in the end, will be
uniquely yours. So, let’s get started and make a game in Godot!

Summary
This chapter was the final push in ge�ing our environment and
project set up before diving into Godot and C#. Here, we took the
time to understand the best project structure based on what was
good for Godot due to how it packages scenes and resources. Then,
we imported the first couple of assets that we’ll need to create a
player controller. We discovered a couple of awesome communities
that have a multitude of resources when it comes to creating projects
in Godot. Finally, we set up a version control system to track and
manage our project without the worry of losing it.

In the next chapter, we’re going to work entirely in Godot and create
our player controller. This will include se�ing up the node structure,
creating and managing a camera on the player, and learning how to
trigger various animations on our model. We’ll end the chapter by
extending the player controller to include some actions such as
running and interacting with the world.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this

http://packtpub.com/unlock

book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

————————— Part 2 —————————

Creating a Simple 3D Action
Game

In this part of the book, we’ll create a vertical slice of our 3D action
game. We’ll start by building out a 3D level and creating a world that
feels lived in. Then, we’ll build on top of this world, focusing on
different areas. The first will be creating a main menu and providing
a user interface for the player to navigate our world. After that, we’ll
add sound effects and music to add to the game’s immersion. Lastly,
we’ll create a non-playable character (NPC) and provide it with
pathfinding, making it move autonomously throughout our world.
By the end of this part, you will have a vertical slice of a simple 3D
action game with a deep understanding of Godot’s theme editor,
sound buses, and navigational agents.

This part of the book includes the following chapters:

Chapter 4, Creating Our Player Controller
Chapter 5, Creating Our Game World
Chapter 6, Developing and Managing the User Interface
Chapter 7, Adding Sound Effects and Music
Chapter 8, Adding Navigation and Pathfinding

4

Creating Our Player Controller

In this chapter, we’ll be looking at how to create a player controller.
This is an object that lives in its own game scene and can be dropped
into our game World (we’ll design the game World later).

This chapter’s goal will be to design the player controller in a
manageable and easily extendable way. For example, we’ll have the
player able to walk, run, and jump, but if you wanted to add
something such as a grappling hook or a double jump, you could do
that with minimal work.

This chapter will be the foundation for how the player interacts with
the world and will be pivotal in future chapters; not only is the
world and level design important but how the player reacts to that
world too.

Our goals for this chapter will be as follows:

Creating our player’s node structure
Providing movement to our player
Moving the camera
Creating our animation tree
Expanding our jumping animation
Adding a run ability

Technical requirements
For this chapter, the technical requirements will be the same as in
Chapter 1.

All the code from this chapter will be available in the GitHub
repository here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Creating our player’s node
structure
In the last chapter, we downloaded and imported some of the assets
we’ll need with our project. One of those items was a rigged and
animated character model from GDQuest. We will now take that
model and expand its functionality to create a player that takes
inputs and animations. To do that, we need to add specific nodes
such as a camera, collisions, and a C# script.

Open Godot and select Other Node, which is in the Scene dock and
below the 2D and 3D options. Much like we did in our 2D example
in Chapter 2, we will be creating a character to interact with our
world. So, search for CharacterBody3D, select it, and rename it to
Player . Then, click and drag our open source character model,
mannequiny.glb , from our FileSystem dock into our Scene dock.

With this step, we’re nesting the mannequin model inside our Player
scene. This means that the mannequiny.glb scene is packed into the
Player scene. Packed scenes are serialized, isolated scenes that are

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-

wri�en to file. They can be called through ResourceLoader and often sit
inside other scenes. Let’s look at an example.

When the scene for the Player model, mannequiny.glb, is initially
added, it has a root node of CharacterBody3D, as shown in Figure
4.1. When it’s added to the World scene, however, it’s a single node
with a clapperboard icon next to it. Being a single node in another
scene, even though it has multiple child nodes, is what denotes it as
a packed scene. This is something we will do repeatedly throughout
the book, allowing us to have encapsulated objects that we can
change with minimal rework.

However, we’ll need to access some of these nodes, so go ahead and
right-click the mannequiny.glb node that’s in our Scene dock. Then,
select Editable Children. This is the correct way to access any
packed scene we have as it will keep a connection to the scene even
after it’s in another scene packed. We’re doing this because we need
access to things such as AnimationPlayer. Our screen should now
look like Figure 4.1.

Figure 4.1: The Player scene in Godot after importing mannequiny

A close-up of the node structure can be seen in Figure 4.2.

Figure 4.2: A close-up of the Player scene node structure up to this point

Notice how the nodes below mannequiny-0_3_0 are gold now. This
is because they are flagged as Editable Children in Godot. We do
this so we only have to edit one instance of the Player model without
needing to update every scene it’s in. This concept may apply more
to other packed scenes such as collectibles or something else that’s
easily repeated in the World scene. With the se�ing correctly
applied, let’s turn our a�ention to the AnimationPlayer we now
have access to.

After adding the Player model, it will already be looping an
animation. Before doing anything else, let’s set the animation to idle
as the default is set to run. Select AnimationPlayer from Figure 4.2
and where the Output console is below the Viewport, there’s a drop-
down menu, as can be seen in Figure 4.3. Set this dropdown to idle
for now.

Figure 4.3: Se�ing the animation to idle for the player

Looking back at Figure 4.2, the CharacterBody3D that we renamed
to Player should have a small caution triangle next to it, alerting us
to the fact it has no collision currently.

To add a collision shape, follow these steps:

1. Right-click the Player node and select Add Child Node.
2. Find a CollisionShape3D (make sure it’s for 3D and not 2D)

and add it to our scene by making it a child of our root node,
Player, which is the CharacterBody3D node.

3. Select CollisionShape3D to select the node. In the Inspector
dock (right-hand side of the Viewport), there is an option for
Shape. It currently says empty. Open the drop-down arrow
next to the word empty, select NewCapsuleShape, and a
capsule should appear on our character model in the Viewport.

The capsule is a bit larger than our model, which means when our
player interacts with the World, they’ll collide with objects sooner
than we’d like. After selecting the CollisionShape3D node in the
Scene dock, we can resize the capsule using the Inspector dock,
se�ing the radius of the capsule to be a li�le smaller, so it hugs the
model a bit be�er. The exact placement can be set by adjusting the

Height and Radius values of the capsule and its Position values, as
shown in Figure 4.4.

Figure 4.4: Se�ings for CollisionShape3D

After adjusting CollisionShape3D, as shown here, you can see the
result in Figure 4.5:

Figure 4.5: The Player model with a capsule collider around it

With our collision snuggly on our Player model, we can move on to
the next part of se�ing up our Player scene. We’ll be adding a camera
to an empty Node3D to act as a camera mount along with a spring
arm:

1. Right-click the Player node and select Add Child Node.
2. Find and select the Node3D node – this is a generic node that

will act as a placeholder for our camera components.
3. Add a child node to our Node3D node, search for

SpringArm3D, and select it.
4. Add a child node to our SpringArm3D node, search for

Camera3D, and select it.
5. Select the Node3D node we created and rename it to CameraPivot .

Those were the final nodes to add to our Player scene. The node
structure should now look exactly like Figure 4.6:

Figure 4.6: The Player node structure that’s needed to get started

Note

I’ve gone ahead and renamed the mannequiny-0_3_0
node to Body for the sake of clarity, which you can see
in Figure 4.6.

With the Player nodes organized in the right hierarchy, we need to
position some of these nodes in our Viewport in more functional
places on our Player model. For example, the Camera3D and

SpringArm3D nodes are, by default, not where we need them to be.
Before doing that, however, let’s take a moment to learn some nice
tips and tricks for navigating the Viewport.

Navigating the Viewport
Since we will be moving in the 3D space of the Viewport quite a bit
and working with various assets, let’s talk briefly about how to
maneuver around it. Each axis is a different color, and that color
corresponds to one of the lines in the Viewport where our model is
si�ing. This makes it easier to know what axis we’re working on or
looking at. These are also represented back in Figure 4.1.

There are two ways to navigate space in the Viewport:

Clicking the scroll wheel and rotating/panning with the mouse
Right-clicking with the mouse and moving around using the W,
A, S, and D keys

To speed up while using the right mouse click, you can also hold the
left Shift key.

We can also augment how close or far away objects are by doing the
following:

Holding Ctrl and using + / -
Pinching the mouse pad if you’re on a laptop or using the scroll
wheel
Holding the right mouse bu�on and moving the camera with W,
A, S, and D

With a be�er grasp of how to navigate this space, let’s finish se�ing
up our player character’s camera.

Configuring our camera
As mentioned, our Camera3D and SpringArm3D nodes are not
placed in the most optimal places for our player. When we create
them, they are generated in the scene at a default position based on
their parent node position or at the origin of the scene, (0,0,0) . Let’s
fix that.

In the Viewport, click and drag the CameraPivot node – this will
automatically move its children, SpringArm3D and Camera3D too –
and position the camera to be directly behind the neck of the player,
as shown in Figure 4.7. To do this, we’ll need to rotate the camera on
the Y axis to make sure it’s facing the correct way, but we’ll do that
in our Player.cs script later. The Viewport, camera, and player
should look like Figure 4.7.

Figure 4.7: The camera positioning on the player’s head

The purple-looking lines in Figure 4.7 extending behind the Player
model’s face are the Camera node’s viewable area, while a faint blue
line above the grid (not the axis but further above) is the
SpringArm3D node. It’s extending out beyond the player’s head. If
we weren’t changing the rotation of the camera angles in the script
(and based on player input), we would want to change how this is
set up. Instead, we’ll move on to configuring our spring arm by
looking at its properties.

With all nodes correctly positioned, let’s make sure we have the
properties of the SpringArm3D node correct. Highlight the node
and look at the Inspector dock. Our SpringArm3D node has a
default camera length of 1 meter. We want to set the Length option
to be 3 meters instead. The way a SpringArm node works is that
when the game starts, the Camera node will be pushed back along
the length of the SpringArm node unless it collides with something,
such as in Figure 4.8. When the player walks into the caves in our
World scene and we rotate the camera, the camera is pushed closer
to the player along the SpringArm node. This is why, sometimes
when we rotate cameras in games, we get a close-up view of our
character. You can see this effect in Figure 4.8, which is a sneak peek
of the game World we’ll be creating in the next chapter.

Figure 4.8: An example of our spring arm pushing the camera forward

The important part of a spring arm is that it allows the camera to
move around collisions, so it can focus on the character as someone
pans around without ge�ing clipped out or blocked. Cameras are a
crucial part of a third-person controller and require some unique
conditions to be set, which we will look at when rotating our player
and panning with the mouse.

Note

If you are unfamiliar with what a spring arm is and
how it works in relation to cameras, you can read
more about it here:
https://docs.godotengine.org/en/stable/tutor
ials/3d/spring_arm.html.

https://docs.godotengine.org/en/stable/tutorials/3d/spring_arm.html

And that’s it for now! We’ll be adding some more items to our player
as we get deeper into development, but this is an excellent base to
start with. Again, because our Player scene is encapsulated by itself,
we can easily extend it to add more components. For example, we
could create items that are their own packed scenes that are then
added as children to our player.

Be sure to save the scene and name it Player . Then, go ahead and test
it by clicking the Play bu�on that’s on a clapperboard in the top-
right corner, as shown in Figure 4.9.

Figure 4.9: The Play bu�on for running specific scenes highlighted

This Play bu�on will run the currently open scene only, not the
default one for the project. A new window should appear running
the scene, and the player should float in the air. If there are no errors,
then you’re good to move on to the next step.

Next, we’ll get our player moving and create a small test area for our
movement to make sure our player is tuned and ready to go.

Providing movement to our player
As we saw in Chapter 2, providing base movement to a
CharacterBody object is very easy. Godot provides a good
foundation to start with in terms of scripting, so let’s go ahead and
create the movement script to get our model moving.

Attaching a script
To a�ach a script in our Player scene, follow these steps:

1. Right-click the Player node and click the A�ach Script bu�on.
2. Make sure the script is being created in C#, not GDscript.
3. Select the Basic Movement template from the Template

dropdown. The template should be automatically selected in the
Template box by default when a�aching a script to a
CharacterBody but confirm before moving forward.

4. Name the script Player.cs .
5. Click Create and the template script should open in the Godot

editor.
6. Double-click the script from the FileSystem dock, and the script

should open in the IDE you’ve configured in the Editor se�ings.
Don’t erase anything in the template as we’ll be building off it in
later sections – just simply save the scene.

It really is that easy! This script provides very limited movement in
so much as we can only move left, right, forward, and backward, but
it’s a start, nonetheless. We’ll be augmenting a lot of this boilerplate
throughout the rest of the chapter. But next, we need a floor with
collisions to test our movement.

Adding a test floor
To start adding a test floor, let’s create a new scene by clicking the +
sign next to the name of the Player scene, as shown in Figure 4.10:

Figure 4.10: The Player scene tab next to the bu�on to create a new scene

In the Scene dock, we’ll be prompted about what kind of scene we’re
creating – this will be a 3D scene. Now, save the scene and name it
TestArea .

Then, in the Viewport of the scene, you’ll have some options for
viewing the world. The main toolbar under the scene names are
ways to interact with the Viewport. The other option right below
that toolbar is our angle of view; this is a bu�on that sits in the top
left-hand corner of the Viewport. Click the Perspective bu�on and
make sure it’s set to Perspective. You can see it in Figure 4.11.

.

Figure 4.11: The Perspective bu�on, si�ing in the top-left corner of the Viewport

By being able to view a scene in a variety of ways, we can consider
the flow of a scene and the way a player might move through it. We
can also think about the way we shape the space around a player
and what that communicates to them.

Now, when first designing a level, we do what’s called blocking out.
Most game engines have a way to quickly create prototypes with
primitive shapes (e.g., boxes, cylinders, etc.). Godot has a convenient
way to block out levels too. If you’re unfamiliar with the term, when
constructing a level, level designers often will gray-box or block out
the level, so it can be tested for size, flow, and other metrics.

Note

If level design is an area of interest for you, I highly
suggest participating in Blocktober, where designers
create levels throughout October. You can read more
about it here:
https://worldofleveldesign.com/categories/le
vel_design_tutorials/guide-to-
blocktober.php.

To start blocking out an area to test our player movement, right-click
Node3D in our newly created scene and add a CSGBox3D node. A
white cube should appear at the origin of our scene. Change the size
to be something like a floor in the Inspector dock – a small area of
25x1x25 should be fine.

Select the object (CSGBox3D) in the scene hierarchy. Then, in the
Inspector dock, find the Size property. Change the size on the x axis
to 25, the y axis to 1, and the z axis to 25, as shown in Figure 4.12.

https://worldofleveldesign.com/categories/level_design_tutorials/guide-to-blocktober.php

Figure 4.12: CSGBox3D properties for testing our player

By default, CSGBox3D nodes don’t start with a collision on them, so
be sure the Use Collision property is also selected, as shown in
Figure 4.12.

The last thing we’ll add is a texture to make it easier to have a
contrast with our player against the floor we’re creating. The textures
we downloaded and imported into our project from Kenney Assets
can be used to give the CSG boxes materials. To add a material, do
the following:

1. Select the CSGBox3D node.
2. Find a texture in the filesystem to add to the node.
3. Click and drag the texture from the FileSystem dock into the

empty material slot in the Inspector dock, as shown in Figure
4.12.

4. Make sure the Use Collision flag is checked On to ensure we
don’t fall through the floor!

The white block will now update with the texture of our choice.
There are some material se�ings that can be changed around if
desired, which you can find in the Inspector dock; these include the
normal map for the material, shadows, UV maps, and more, though
we won’t worry about changing anything for the time being as this
is only a testing space.

The last thing to do before running our testing scene is to drop our
Player scene into it. We can do this by looking at our FileSystem
dock and dragging Player.tscn into our Scene dock, as shown in
Figure 4.13.

Figure 4.13: Adding the Player scene to our TestArea scene

Our testing area should look something like Figure 4.14 where the
player is si�ing on top of a textured floor and using one of the
textures from the asset we imported.

Figure 4.14: The testing area with a floor and our player

After running the game, we can see that our player moves, using the
arrow keys by default, but our Player model doesn’t turn and
neither does our camera. Let’s consider how best to pan around with
the mouse, and then we’ll look at augmenting our Player model to
follow the direction we go.

Moving the camera
As mentioned earlier, the way a camera sits on a Player model is
critical. Both first-person and third-person camera options provide
different experiences for players. Specifically, a third-person camera
offers a wider field of view. It can also provide unique narrative
moments through the environment and by watching what happens
to the player’s body rather than feeling like it’s being experienced
firsthand. Using a third-person camera for our project is going to
give us the opportunity to explore the camera and animation nodes
in Godot, so let’s get started.

Our first goal is to be able to look around. Right now, we can only
see in one direction and on one axis. We need to add a couple of
functions to our Player.cs script that we created in the last section.
Open it up in the editor of your choice.

With the test area and Player.cs script created, we can start
programming in C#! We’ll first start by limiting the mouse cursor
since we’re creating a third-person player character.

Setting Mouse Mode
There are a lot of functions in Godot’s API that allow us to customize
the screen and mouse se�ings. Mouse Mode is one of those
functions, which allows us to alter the way the cursor behaves in our
game. We want the way the cursor behaves to be done before our
player can move or do anything, so we will be creating a function
called _Ready that will immediately be called by Godot on start.

The _Ready() function takes no parameters and is called when the
object is created. It also runs only once, so it’s a perfect space to
initialize any se�ings or nodes that we may need access to later. To
write the function, add the following lines above the _PhysicsProcess
function:

public override void _Ready()
{
 // Access nodes we'll need from our scene here
 Input.MouseMode = Input.MouseModeEnum.Captured;
}

With this line of code in our function, we’re telling Godot to capture
the mouse. This locks its position in the center of the screen. We do
this by accessing an enumerator in Mouse Mode called
Input.MouseModeEnum.Captured .

Other available options for Mouse Mode include the following:

MouseMode.Enum.Visible : Just as it sounds, it makes sure the cursor
is seen on the screen.
MouseMode.Enum.Hidden : This hides our cursors from the screen. You
might think we want this option for our game, but we’ll be
tracking the mouse position in the next section.

The two listed options pertain to keeping the mouse in the window
size of our game. This can be especially important when dealing
with games that require a lot of mouse movement or rapid mouse
clicks and time-sensitive games. You can read more about Mouse
Mode here:
https://docs.godotengine.org/en/stable/classes/class_in
put.html#enum-input-mousemode.

Now that the cursor is configured properly, we can look (pun
intended) at how to move our camera with our mouse to look
around our test area.

Panning with the mouse
With our mouse confined to the center of the screen, we can now
add our second function, which will be the _Input function. We can
place this right between our _Ready and _PhysicsProcess functions. So,

https://docs.godotengine.org/en/stable/classes/class_input.html#enum-input-mousemode

first, declare the function, and then add an if statement for when the
mouse moves. Our function should look like the following:

public override void _Input(InputEvent @event)
{
 if (@event is InputEventMouseMotion eventMouseMotion)
 {
 }
}

Next, we’ll add the logic for rotating the camera in relation to the
mouse, which will sit inside the preceding if statement. To do this,
we need to access the camera to then rotate it:

1. Create a private Node3D variable called cameraPivot at the top of
our script:

private Node3D cameraPivot;

2. In the _Ready function, set our new variable to the GetNode
function for accessing the node from the scene:

cameraPivot = GetNode<Node3D>("CameraPivot");

With the GetNode function call, notice we that have to specify the type
of node we are accessing. This is the string of characters in quotation
marks. By doing this, we specify the node from our scene based on
its hierarchy in the scene. If you’re ever unsure what the path to a
node is, you can always right-click the node from the Scene dock
and select Copy Node Path to be sure.

Note

Rather than having long path names to manage, as
well as not having to worry about the order of your
nodes, you can right-click a node and select Access as
Unique Name. A % symbol will appear next to the
node, and you can access it the same way with the
addition of the % symbol. So, instead of CameraPivot (as
in the previous line of code), it would be %CameraPivot .

Also, notice we are accessing Node3D , which is the parent of Camera3D .
We want to rotate both the camera and the spring arm together,
which is why we placed them as children under CameraPivot . Any
movement changes we make to CameraPivot will automatically be
applied to SpringArm3D and Camera3D , since they are both children of
the CameraPivot node. This allows us to only write the movement code
once rather than twice.

Now, we’re going to rotate the camera pivot one axis at a time. We’ll
first rotate it on the Y axis, using the RotateY function that’s available
on any Node3D object. So, in our if statement, type the following:

cameraPivot.RotateY(-eventMouseMotion.Relative.X);

Here, we’re using the eventMouseMotion variable, which is our mouse
position. Remember, since we’re using the captured mode on
MouseMode , we have to get the position by using the Relative function
of InputEventMouseMotion . The final part of the code is accessing the
axis, which is denoted with either X , Y , or Z . We want the X axis in

this instance since, when we move the mouse left or right, we’re
rotating the camera horizontally on the Y axis.

Run the scene and see what you notice. The camera moves when we
move the mouse, but it’s sporadic and unwieldy to control. We can
tweak the sensitivity of this by multiplying it by some factor called
mouse sensitivity. Add a private variable to the top of our script like
so:

private float cameraSensitivity_H = 0.05f;

We’ll now multiply our mouse position with the horizontal
sensitivity, so now our line in the _Input function should look like
this:

Test the scene again, and if we move our mouse very slowly, we can
see that it is working correctly.

However, something is still off. If we hover over RotateY , Intellisense
should tell us the definition of it: Rotates the local transformation
around the Y axis by angle in radians. This is important because
we’re not passing in radians at the moment to our RotateY function.
We need something to convert our vectors (which are in degrees)
into radians. Let’s look at that next.

Creating a conversion function

cameraPivot.RotateY(-eventMouseMotion.Relative.X*CameraSensitivity_H)

Knowing math – specifically trigonometry, calculus, and linear
algebra – is a boon when it comes to creating a 3D game. Even
though the game engine does a lot of computational parts for us, we
still need to know what mathematical functions to pull from the API,
even if we don’t know how to do them by hand. Having a math
background can also help us understand issues that might occur
when working in a 3D space.

If you’re unfamiliar with any of the aforementioned math topics, I
found Khan Academy’s courses to be a good starting point
(https://www.khanacademy.org/math/). For more advanced
users, I found Essential Mathematics for Games and Interactive
Applications by James M. Van Verth and Lars. M Bishop to be a great
resource when it comes to math and game development.

In this section, we’re going to use some trigonometry to get our
player moving at a smooth and manageable pace. At the bo�om of
our script, we can add a short function called ConvertDegreesToRadian
that takes in a float type and returns a float type:

public float ConvertDegreesToRadian(float num)
{
}

Rather than type Pi out, we can use the Math library that’s part of the
.NET framework (this is something that might take an adjustment,
especially if you are coming from using GDscript). We’ll multiply
our mouse position vector by Pi and divide that by 180, like so:

num = num*((float)Math.PI/180);

https://www.khanacademy.org/math/

In our final line, we’ll return the variable we’ve manipulated (num):

return num;

So, our ConvertDegreesToRadian function should look like this:

public float ConvertDegreesToRadian(float num)
{
 return num * ((float)Math.PI / 180);
}

Now, go back and call the function. Put it into our RotateY function
and be sure to capture both the mouse position and camera
sensitivity. The line should now look like this:

Test the scene again. When we look left and right, it’s a lot smoother
and easier to control. It might even be a li�le too slow, depending on
your machine se�ings.

Let’s go ahead and exit out of this and repeat the previous steps for
our player to look up and down.

We can add a separate mouse sensitivity variable to the top of our
script and call it cameraSensitivity_V . Then, set it to the same value as
cameraSensitivity_H . Both of these variables at the top of the script will
look like this:

[Export(PropertyHint.Range,"0,0.5")]
private float CameraSensitivity_H = 0.05f;

cameraPivot.RotateY(ConvertDegreesToRadian(-eventMouseMotion.Relative

[Export(PropertyHint.Range, "0,0.5")]
private float CameraSensitivity_V = 0.05f;

Note

Since we don’t have a perfect number to use for the
sensitivity, we can do something very convenient for
ourselves. Godot allows us to export variables, which
serializes them and makes them accessible in the
editor. All you need to do is add the [Export] a�ribute
above the variable. You can take it one step further
and specify the type of variable. I’ve set mine to a
range by doing [Export(PropertyHint.Range,"0,0.5")] ,
which gives me a slider in the editor.

Next, we’ll add another line in our if statement that captures the
mouse position, except this time, we’ll be calling the RotateX function.
It’ll be the exact same line, but we want to be focusing on pivoting
around the X axis rather than the Y axis as we just did. It will look
like the following:

Test it one more time, and we’ll be able to move along both the X and
Y axis. Yet when we do, we get some odd behavior. The camera tilts
in a way that is outside of the range of what we want it to be. Let’s
see how to fix that.

cameraPivot.RotateX(ConvertDegreesToRadian(-eventMouseMotion.Relative

Clamping the camera
To prevent our camera pivot from tilting in a wide variety of ways,
we need to clamp our camera’s rotation to a range that is
manageable for both us and our player. Thankfully, the rotation
component of Node3D has a clamp function. We’ll need to give it a
range that it can clamp to and from – essentially, the bounds we
want to set.

Our clamp function takes in a Vector3 , so we can define another
variable at the top of our script. I called mine maxSpringRotation , and I
found that 30 degrees felt fairly good in terms of movement (you can
tweak these variables to what works best in your project). So, the
variable declared should look like this:

private Vector3 maxSpringRotation = new Vector3(30,30,0);

Calling the clamp function will be done right after we rotate the pivot
and inside our if statement within the _Input function. It will look
like this:

With these two lines added, go ahead and test the scene and move
the camera around in all directions.

Our camera is now smooth, but our player doesn’t respond to our
movement. Let’s tie them together by moving the player with the
camera and completing the camera portion of our player controller.

cameraPivot.Rotation = cameraPivot.Rotation.Clamp(-maxSpringRotation,

Moving the player with the camera
The final piece for making a relatively smooth camera that our
player responds to is making the Player model turn, depending on
our input. If we hit the left-moving key (currently the left arrow
key), we want our Player model to face that direction. Since we’re
already rotating the camera based on input, let’s have our Player
model then follow our input commands to match with the camera.

To do this, the variables we need are as follows:

private Node3D body;
private Vector3 rotation;

Here, the body variable is going to be how we access our Player
model in the scene tree, and the rotation variable is going to be a
placeholder for the model’s rotation.

Now, in the _Ready function, let’s go ahead and get a reference to the
Player model by doing the same thing we did for CameraPivot except,
instead, we’ll be doing it with the Body node. The line we’ll be adding
is the following:

body = GetNode<Node3D>("Body");

We also need to set our placeholder variable, rotation , to the body’s
rotation, so we can update it later. The rotation component of Node3D
on a specific axis is a read-only variable, so we must update the
entire rotation. Directly under the line we’ve just added, write the
following:

rotation = body.Rotation;

Now, we can modify the model in a variety of ways, including
rotation, transformation, and so on. We only want the player to
move when we move in a specific direction, so we need to change
the rotation in our _PhysicsProcess function when we’re moving.

So, find the two lines of code where we update the X and Z
components of velocity :

velocity.X = direction.X * speed;
velocity.Z = direction.Z * speed;

Then, after those lines, add a new line that involves some
interpolation:

With rotation.Y , we’re rotating the Player model’s body on the Y
axis.

Let’s use Figure 4.15 to talk about what we’re doing here in the code.
If we run our game and move left and right, we’re moving along the
X axis. If we walk forward and back, we’re walking along the Z axis;
that’s why we want to rotate along the Y axis, which is essentially
looking straight up.

rotation.Y = Mathf.LerpAngle(rotation.Y, Mathf.Atan2(velocity.X, velo

Figure 4.15: Our game in the editor, marked up with the X axis and the Y axis

Note

If you’re unfamiliar with interpolation, be sure to read
the Godot documentation, which gives a good
overview of what interpolation is and how it works in
Godot:
https://docs.godotengine.org/en/stable/tutor
ials/math/interpolation.html.

https://docs.godotengine.org/en/stable/tutorials/math/interpolation.html

So, in the code, we’re se�ing the rotation equal to this LerpAngle
function, which we’re calling from the Mathf library that’s part of the
.NET framework. The word lerp is short for linear interpolation – a
very general definition of linear interpolation is we are using math to
smoothly move an object from point A to point B. Point A in our
code is the current rotation we’re si�ing at on the Y axis (rotation.Y).
Point B is the point that we’re lerping to (Mathf.Atan2(-velocity.x, -
velocity.z).

As mentioned, we use all types of mathematical concepts to simulate
the real world through pixels. The math function we’re calling from
Mathf is the inverse tangent, which takes our Z axis and our X axis
and gives us an angle in response. If you’ve done trigonometry, the
word tangent should sound familiar to you – it’s one of the
trigonometric functions defined as tan = opposite/adjacent (the
opposite is adjacent/opposite).

Let’s use an example with our player, using Figure 4.16. Say we start
turning to the right. To smoothly make that turn, we need the angle
closest to our player. We’re going to take the inverse tangent –
adjacent over opposite. The line in our triangle that runs along the X
axis is adjacent to us and labeled as such, as seen in Figure 4.16, and
the line in our triangle that runs alongside the Z axis is opposite the
angle we want to find, also seen in Figure 4.16.

Figure 4.16: A visual representation of the Atan2 function

Remember, the X axis is how our player moves left and right, and
the Z axis is how our player moves forward and back. That’s why
the X and Z components of velocity are what we give Atan2 rather
than the Y axis. The Y axis is for jumping only! The hypotenuse of
our example is the radius of the triangle, which we aren’t using in
calculating the angle. The radius does extend from the origin, (0,0) ,
but I’ve moved it slightly for our example to be�er see the rest of the
lines in the triangle.

Once we have our new rotation, we can set the Player model equal
to that newly found rotation by writing the following:

body.Rotation = rotation;

Now, test our game scene and move in all four directions. It should
work; however, if you test enough, you will see that we have one
small bug. When you do a complete circle around the player and
then walk forward, the player is going to move forward along the Z
axis rather than reorient the forward direction based on where our
camera is.

To fix this, we need to rotate the direction in relation to the rotation
of the camera to make sure that wherever the camera is behind, then
the front of that is our forward direction, even if it’s not along the Z
axis. We’re just changing the relationship of what forward means to
our model. After the line where the direction vector is defined, we
can add this:

direction = direction.Rotated(Vector3.Up, cameraPivot.Rotation.Y);

Once more, test the game scene, rotating the camera, moving in all
four directions, and using the movement keys (I have rebound mine
to W, A, S, and D in our input map exactly like we did in Chapter
2). Our Player model should now face the correct direction in
relation to where our camera is around the player.

Now, at this point, by default, you can make the player jump with
the spacebar, yet we’re still in a standing stance. So next, we’re going
to look at animating our player.

Adding walking and jumping
animations with the animation tree

Animations are what bring characters to life in games. They add
body language and communicate what characters are both feeling
and doing throughout the game. While we won’t be rigging or
modeling our character, we will be utilizing those pre-made
animations to trigger depending on the state our player is in.

Select the mannequiny (now named Body) scene and select Make
Local. Select the AnimationPlayer node, and it will appear below
the Viewport where the Output/Debugger dock is.

Note

The Make Local option tells Godot to give every
instance of these nodes their own resource. This is
useful when you have multiple enemies and want
them to utilize resources that are unique to their
instance.

It will look like Figure 4.17, though different animations may be pre-
selected:

Figure 4.17: The idle animation track that appears when selecting AnimationPlayer

Next to the word Animation, there is a drop-down menu where you
can select different animations, as seen in Figure 4.18

Figure 4.18: The drop-down menu of available animations

To see how the animation will look, select the Play bu�on to the left
of the Animation bu�on (you can see it back in Figure 4.17).

We will implement most of the animations, but only a few now; we’ll
add the rest as we start building out our world and adding more
interactable components. For now, let’s start by ge�ing a path to
AnimationPlayer.

Before we do that, let’s consider a couple of different ways we can
implement our animations:

Manage everything in C# scripts: We could have our
animations triggered based on the input we’re providing to our
player, but this can become cumbersome and unwieldy as our
player controller expands.
Use AnimationTree: This is a state-based node for managing
animations. While it can be confusing at first, the payoff for
se�ing it up this way far outweighs any learning curve. Another
benefit of using an AnimationTree node is we’ll get smooth
transitions between our animations and will be able to fine-tune

many details when it comes to them. This is the option we’ll be
implementing.

To get started, let’s right-click our root node in the scene (Player)
and select Add a Child Node. Search for AnimationTree and select it.
With the AnimationTree node added to the scene tree, we will be
able to access it in our Player.cs script and trigger animations as
needed.

Note

To toggle between multiple windows that are in the
Output/Debugger dock, you can click the words
along the bo�om to switch views. For example, you
can toggle easily between Animations and
AnimationTree.

AnimationPlayer, which was showing our animations in the
Output/Debugger dock, is now a blank space. We’ll want access to it
in our Player.cs script, so add an AnimationTree variable at the top for
it like so:

private AnimationTree anim;

Just like with all the nodes we’ve been working with, we’ll need to
use the GetNode function to access the properties of that specific node.
It will look like this:

anim = GetNode<AnimationTree>("AnimationTree");

Now we’ve got our AnimationTree node ready to be called in our
script.

Next, we’re going to step out of our script and work in the editor
where the Output/Debugger dock is. As noted, AnimationTree had
a blank space in its window – this is because we need to give it a tree
root. If you look in the Inspector dock of AnimationTree, you’ll see
a Tree Root property that’s empty. Click the drop-down menu and
select New AnimationNodeStateMachine. There are a lot of options
here, but we’ll only be covering the StateMachine version.

Note

If you’re interested in the different AnimationNode
types, check out the Godot documentation on
animation trees:
https://docs.godotengine.org/en/stable/tutor
ials/animation/animation_tree.html.

Once selected, we’ll have two nodes appear in the window below
our Viewport – Start and End. Yet, our AnimationTree node has a
warning sign next to the node, telling us that we need to have a
reference to AnimationPlayer. There’s a property in the Inspector
dock called Anim Player, which appears when you have the
AnimationTree node selected. We can click and drag
AnimationPlayer into this slot or click the Assign bu�on and select
it from there.

With AnimationPlayer loaded into AnimationTree and a new
AnimationNodeStateMachine created, we are almost ready to get

https://docs.godotengine.org/en/stable/tutorials/animation/animation_tree.html

into creating the different states we’ll need for our player in
AnimationTree. Before that, let’s explore the navigation of
AnimationTree as it can be confusing at first.

Navigating animation trees
As mentioned earlier, AnimationTree is state-based. When we
loaded AnimationPlayer into AnimationTree, you can see two
states appeared. One was Start and the other was End. Above this
space, there are some controls to create more states, as seen in Figure
4.19.

Figure 4.19: Tools to create and connect states in AnimationTree

Here is a breakdown of what each bu�on does listed from left to
right:

Mouse Pointer: Select and move nodes around
Plus sign: Create a new node (you can also right-click in the
empty space in AnimationTree to create a new node)
Connector: This connects nodes and provides a smooth transition
between animations
Trash can: When a node or connection is selected, we click the
trash can to remove it

With the tools of navigating AnimationTree nodes covered, we can
get into creating one and se�ing up the animations we want our

player to have based on what’s been provided with our model.

Creating the AnimationTree node
Let’s go ahead and add our idle animation to the state machine by
right-clicking next to the Start block. Then, hover over Add
Animation and click idle. We have this list of animations because
we’ve tied AnimationPlayer to AnimationTree, and you can see this
back in Figure 4.18. AnimationTree pulls the data necessary from
AnimationPlayer, so we have access to everything from idle to walk
and run and jump. If this was not the case, we couldn’t access them
in the state machine.

You should now see a node labeled as idle with a Play bu�on inside
it, just like the Start and End nodes. Click the connector bu�on
above AnimationTree and drag it from the Start node to the idle
node, so it looks like Figure 4.20:

Figure 4.20: The current state of AnimationTree after adding the idle animation

If we click the small Play bu�on that’s on our idle node, nothing
happens. This is because we don’t have the Active property on
AnimationTree set to true. So, select the AnimationTree node, and
in the Inspector dock, click the checkmark next to the Active

property (see Figure 4.21). The Player model should now be looping
through the idle animation in the Viewport.

Figure 4.21: The AnimationTree node set to Active in the Inspector dock

Go ahead and test the scene and notice that our player has an idle
animation no ma�er what our input is, but at its default, it is
standing idle, which is correct. Let’s move on to adding a walking
animation.

Walking
Right-click in the state machine space again and add the walk
animation. Select the connector bu�on on the AnimationTree node

and drag one from idle to walk. Now, our player is looping the walk
animation.

At some point, we will want to stop moving and will need a way to
return to our idle animation. Currently, our connectors between
nodes are just one way, but if we add a second one going from walk
to idle, then the Player model will start to flicker rapidly between
the two animations. This is because we aren’t se�ing any conditions
on the animations for when they should play.

Note

If, when adding the walk node in AnimationTree, the
animation only plays once, then you need to make
sure the animation selected is set to Looping in
AnimationPlayer. This can be found in the top-right
corner of AnimationPlayer.

Conditions are how we connect the state machine in Godot to our
Player.cs script in C#. The Condition property sits on the connectors,
or transitions, of AnimationTree, so if we select our connector that
goes from idle to walk, we’ll have two lists of properties – Switch
and Advance. Expand the Advance one, and you’ll see Mode,
Condition, and Expression listed.

Figure 4.22: The Inspector dock when selecting a connector (animation transition) from
AnimationTree

In Figure 4.22, we can see I’ve already added the word move to the
Condition property.

Next, I’m going to select the other connector (the one going from
walk and pointing toward idle) and add a condition called idle .
Now, our AnimationTree node should look like Figure 4.23. Notice
how when we have a connector piece selected, it highlights the
connector with a blue outline.

Figure 4.23: The current state of AnimationTree

Now that we have two animations in our state machine, let’s look at
how to call these in our Player.cs script. Currently, if we run our
game, we still only run the idle animation. This is because it’s our
default animation state on start, and we aren’t providing any logic to
change between them.

Remember we already added the code for accessing AnimationTree.
Now we need to use that variable and set the conditions for when to
switch between animation states. We need to add the following line
in our _PhysicsProcess function after our inputDir and direction
variables have been set but before MoveAndSlide is called. I will be

placing this line of code at the bo�om right before MoveAndSlide as I
feel it makes for cleaner code.

Here is the first line to add:

If you recall, anim is our variable for accessing AnimationTree. We’re
se�ing an animation with the Set function, using the path to the
condition in our idle animation ("parameters/conditions/idle"), and
then defining the conditions for when this animation should be set.
When our player is idle, it’s on the floor, and our direction is zero
since we’re not moving.

To get the path to the condition, we can select our AnimationTree
node and hover over the condition we are seeking in the Inspector
dock in Figure 4.24. In this figure, we hovered over the Idle condition
and the path to it popped up. These conditions appear as we define
them in our state machine, so if we removed one of them, they
would no longer be listed here on our AnimationTree node.

anim.Set("parameters/conditions/idle", (IsOnFloor() && inputDir == Ve

Figure 4.24: The Inspector dock when looking at AnimationTree and hovering over the Idle condition

Now we need to do the same thing, except utilize the move condition
we set for the walk animation. This will be the second line of code
added after the one we created for standing idle. It should look like
this:

Again, we’re doing the same thing as we did before except our path
is now for move and our conditions are slightly changed. When our
Player model moves, it’s on the floor but is moving, hence why we
say inputDir is not equal to Vector2.Zero in the previous line of code.

anim.Set("parameters/conditions/move", (IsOnFloor() && inputDir != Ve

Let’s play our scene and test it out. The Player model should start in
an idle position but as soon as we move in any of the input
directions, the animation will switch to walk. We still don’t have an
animation for jumping, but we’re going to add one now.

Jumping
Adding a jump is going to require more than one node because as
our Player model jumps, there is an additional animation for landing
the jump. Our Player model comes with some additional animations
such as air_jump_anticipation. I challenge you to add this yourself
once we’ve added the other two.

As we’ve done previously, we’re going to make sure the Mouse
Pointer tool in our AnimationTree node is selected, and we’ll create a
new animation and select air_jump. Next, we’re going to drag a
connector out from idle and connect it to air_jump. Unlike walk and
idle, we want to make sure this animation is not looping. As a
reminder, this is a se�ing in AnimationPlayer and can be toggled
on/off when looking at a specific animation. Now, our state machine
should look like Figure 4.25.

Figure 4.25: The AnimationTree state machine with the start of jump being added

Let’s now add our second animation by creating a connector from
air_jump and adding air_land. If we think about the steps that
happen in a jump, we do the following:

1. Launch in the air (either while moving or standing still – ours
will be stationary).

2. Then, gravity pushes us back down.
3. We land (sometimes in the same spot, sometimes elsewhere –

ours will be in the same spot for now).

Thinking about the sequence of a jump, we know we need to draw a
transition from air_land back to idle, since after we complete a jump
cycle, we want to return to the state we were previously in. Yet, this
will cause our model to flicker because we need two new conditions
– we need one to track when we’re in the air (we’ll call this falling)
and one for when we’re done falling (landing).

Now we have a nice jump cycle that can be triggered only from the
idle state, but we should be able to run and jump too. We’ll add
connectors from walk to air_jump just like we did from idle to
air_jump, and then do the same from air_land to walk. If this is
confusing, don’t worry; you can reference Figure 4.26 for clarity:

Figure 4.26: State machine transitions labeled with their conditions

For clarity, M is for move, I is for idle, F is for falling, and L is for
landing.

Before we can test the scene, we need to be se�ing when these
additional animations should trigger in our script, just like we did
with both idle and walk. Back in our script and right after our
previous lines of code, we can add these two lines:

anim.Set("parameters/conditions/falling", (!IsOnFloor()));
anim.Set("parameters/conditions/landing", (IsOnFloor()));

In the falling animation, we’re calling it when we’re not on the floor
(i.e., not colliding with anything) and then we trigger landing when
we collide with the ground. Now, we can test the game scene out
and make sure that each of the animations are triggering when
they’re supposed to.

Once it’s fully tested and working, give a celebratory hoorah to
yourself! We’re almost done with our animations. Yet, you’ll notice
that our player isn’t able to walk and jump, so let’s look at that
briefly before adding the ability to run.

Expanding our jumping animation
Let’s consider why our player isn’t jumping and walking even
though we’re pressing the input key to move forward. If we look at
the basic movement template we’ve used, specifically when our
direction is not equal to zero and we’re on the floor, there’s
something interesting happening in the else block. It’s the following
lines:

else
{
 velocity.X = Mathf.MoveToward(Velocity.X, 0, Speed);
 velocity.Z = Mathf.MoveToward(Velocity.Z, 0, Speed);
}

The MoveToward function takes our current velocity and slows us
down until we reach our target value of zero, which is the second
parameter in the MoveToward function. However, we only want to call
these two lines of code if we aren’t jumping.

A quick way to fix this is to add a Boolean for jumping. At the top of
our script, create a private variable called jumping . The line will look
like so:

private bool jumping = false;

We initially set it to false because, at the start, we are in an idle
position that’s grounded, therefore we aren’t jumping. We’ll use this
variable to toggle between the type of physics we want to happen.

Within the _PhysicsProcess function, we’re going to add an if
statement for registering when the jump key is pressed. Now, in the

if statement where our player pressed the jump key, we’ll set jumping
to true like so within the _PhysicsProcess function:

if (Input.IsActionJustPressed("ui_accept") && IsOnFloor())
{
 velocity.Y = JumpVelocity;
 jumping = true;
}

Currently, we still have the same issue as before – our velocity slows
down to zero once we hit the floor, so we only jump straight in the
air. Let’s add an if statement around the lines where our velocity
approaches zero:

if (jumping == false)
{
 velocity.X = Mathf.MoveToward(Velocity.X, 0, Speed);
 velocity.Z = Mathf.MoveToward(Velocity.Z, 0, Speed);
}

Let’s quickly test the scene out. We can move and we can jump. We
can even move and jump together, beautifully flying through the air.
But once we land, something odd happens – we don’t stop moving!
This is because we are not rese�ing the jumping Boolean to false so
that we can gradually slow down to zero.

Luckily, this is an easy fix. We need one more if statement for when
we touch the ground, using our IsOnFloor function again to tell
Godot that we aren’t jumping anymore. The if statement looks like
this:

if (IsOnFloor())
{

 jumping = false;
}

This block of code can be placed anywhere in the _PhysicsProcess
function. I have mine toward the top of the function after gravity is
applied. Testing the scene again, we can confirm that running and
jumping execute exactly how we want.

Our walking speed is fine, but most games provide the player with
the opportunity to run, so let’s consider how to implement that next.

Adding a run ability
The last section of this chapter includes adding a run ability for our
player. This is logic that is not included in the basic movement
template script we generated when creating our player; however, it
is super easy to add!

We need to remove our Speed constant that is at the top of this script.
After that, all we need are two additional constants called runSpeed
and walkSpeed and then a variable for our current speed called
currSpeed . Our two constants will look like the following lines at the
top of our class:

public const float runSpeed = 8.0f;
public const float walkSpeed = 4.0f;

Alternatively, you could make them variables rather than constants
and export them to the editor to tweak and change until you find a
number that you like. I know that these numbers work well in this
project for what we’ll be creating, so I’ve made them constant.

Next, we will go ahead and create the variable for our current speed.
We’ll be using the constants to set our current speed, depending on
our player input; this makes our code a li�le bit cleaner and prevents
us from having to change too much of our code. Our variable will
look like this:

private float currSpeed = walkSpeed;

By default, we want our player’s movement to start at a walking
pace, hence why we set it to walkSpeed .

With our constants and variables set up, let’s look at utilizing them
in our _PhysicsProcess function. Anywhere you see the word Speed for
the constant we removed, be sure to change it to currSpeed , so that
will be on the two lines where we set our velocity components here:

velocity.X = direction.X * currSpeed;
velocity.Z = direction.Z * currSpeed;

And then, once more, when we decelerate our player, we need to
replace the previous Speed constant with our new currSpeed variable
to the two lines of code that augment our velocity:

if (jumping == false)
{
 velocity.X = Mathf.MoveToward(Velocity.X, 0, currSpeed);
 velocity.Z = Mathf.MoveToward(Velocity.Z, 0, currSpeed);
}

With our new variables created and our current speed set up, we
need to consider what key on our keyboard will trigger the run

ability and tie our code to that input.

Mapping our run ability
When we went through our 2D example back in Chapter 2, we
briefly covered the input map, but did not create our own key
bindings. We’ll go ahead and do that now for our running ability:

1. In the Godot Editor, click the Project bu�on and access the
Project Se�ings window. Then, select the second tab, called
Input Map.

2. In the Add New Action box, type run , and click the Add bu�on
to the right of the Add New Action box.

The run command will now appear below in Input Map, as in Figure
4.27. Yet, it has no key bound to it to trigger it.

Figure 4.27: The Input Map screen with the run command created and not bound to a key

1. Click the + sign next to the line that says run and a new menu
called Event Configuration will appear, as in Figure 4.28.

Figure 4.28: The Event Configuration screen to bind a specific key

2. With the mouse cursor in the box at the top, press the key to
bind our run command to – I have chosen the left Shift key.
Alternatively, you can scroll through the list and select a key.

3. Click OK once you have selected a key.

At the end of these steps, your Project Se�ings page should look like
Figure 4.29.

Figure 4.29: The run command bound to a specific key in the input map

Now, we can go back to our player script and utilize the input we’ve
configured for run to trigger.

Registering run input
Stepping away from the AnimationTree node briefly, we should
spend a moment programming the run animation into our Player
model to make sure it triggers when it needs to. Back in our player
script, we don’t have to do anything else except add two if
statements in our _PhysicsProcess function. I’ve placed mine after
when we handle jump , but anywhere before our inputDir and
direction variables is sufficient.

The first one we’re going to add is making our player run when we
press the key that we bound our run input to (this is Shift, unless you
chose a different key). When we press the key, we want our currSpeed
variable to be set to a new speed, runSpeed . We also need to make
sure that when this key is pressed, we are on the ground and not
airborne, so the code will look like this:

if (Input.IsActionPressed("run") && IsOnFloor())
{
 currSpeed = runSpeed;
}

Within the IsActionPressed function, we’re using the string for the
name of the command we created in Figure 4.27, which is run . Test
the scene out and, while moving forward, press the Shift key. What
happens when we stop? Our speed doesn’t return to walking speed!
This is where our second if statement comes in.

The Input class has a variety of functions available to us. So far,
we’ve only been using IsActionPressed or IsActionJustPressed , but
there’s another function for when a key is released:
IsActionJustReleased . This is the one we need because we want to stop
running as soon as we stop holding the Shift key. So, immediately
below our first if statement, add this:

if (Input.IsActionJustReleased("run") && IsOnFloor())
{
 currSpeed = walkSpeed;
}

Now, we’re checking for when the key is pressed and released to
know exactly when to switch between walking and running. The last
thing, which you might have guessed already, is to add the running
animation to our player.

Adding the running animation
We’ll take a brief moment to extend our AnimationTree node by
including the run animation. This will be quick and easy because
almost all the conditions we need to enter and exit the running
animation are already set up.

Let’s open AnimationTree by going to our Player scene and
selecting AnimationTree. We want to create a new animation block,
which we can do by right-clicking in the AnimationTree space that’s
below the Viewport and hovering over Add Animation. From the
list of available animations, go ahead and select the run one.

Note

Make sure that you’re using the Mouse Pointer node
tool that’s at the top of the AnimationTree node from
Figure 4.19.

Let’s place our run block to the left of the walking animation,
because we only want to trigger the running animation while we’re
already moving, which is how our player script is set up as well.
Once completed, our AnimationTree node will look like Figure 4.30.

To get to that point, let’s do the following:

1. Select the Connect Nodes tool from AnimationTree and draw a
line from walk to run.

2. Set the condition to be running in this connection. To access that
point again, click the connection on AnimationTree, and in the
Inspector dock, expand the Switch property.

3. We also want a way to stop running, so draw a connection from
run to walk and set its condition to move.

4. Finally, we may stop running and not return to walking. We
could become idle, so we need to draw a connection from run to
idle.

5. Set the condition for this connection to idle.

Figure 4.30: Our AnimationTree node with run added

Now, AnimationTree is configured properly, and we can switch
back to our script to implement it in code just as we did the others. If
we think about when we want the player to run, it’ll be similar to the
other animation-switching logic we’ve done already. We want the
player to be on the floor, but we can no longer use our simple check
for whether the player is moving because, if they’re moving, there
are two possibilities – they are either walking or running. We can,
however, check whether our currSpeed variable is set to either walk or

run . So, add the following line below all the code we’ve entered so
far:

Once you have done this, don’t forget to set the options for running
in the Inspector window, as shown in Figure 4.31. Make sure to
expand the Advance option and set the following:

Mode: Auto
Condition: move

anim.Set("parameters/conditions/running", (IsOnFloor() && currSpeed =

Figure 4.31: The Advance property group in the Inspector window of the run animation

As previously stated, we check whether we’re on the floor and
whether currSpeed is set to runSpeed (which is done when we hit our
Shift key).

Before we test the scene out, we need to update our line for when to
trigger the walk animation. The current line only checks whether
we’re on the floor and moving, which was fine before since moving
meant we could only be walking:

Just like for running, we’re checking to see whether currSpeed is set to
walkSpeed , which would happen if we released the Shift key (i.e.,
stopped running) or only used the arrow key to move forward.

Even though our code is set up, we need to configure a few
properties on the run node within AnimationTree.

With this logic added and AnimationTree set up, we can finally test
our scene out. We should be able to walk, run, and jump effortlessly.
You’ll even notice that if you go to the edge of your test area and
walk off it, the player will enter the air_land animation since they’re
falling, which is pre�y neat.

Summary
We covered the fundamental components of creating a third-person
player controller in Godot. This included camera movement and
moving the player with the camera. We also discussed the
importance of a strong mathematical foundation when it comes to
3D development. Then, we triggered animations such as walking
and jumping, which were built into the character model, using a
state machine to implement them in our game logic. Lastly, we
added the ability to make the player run.

This is a great foundation for moving into the next chapter, which
will focus on developing the world our player will live in by creating
a level, collecting items, and having our player interact with the
world around them. We will continue to extend the player controller

anim.Set("parameters/conditions/move", (IsOnFloor() && inputDir != Ve

as needed throughout the rest of the book, but for now, we will
utilize what we have created here.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

http://packtpub.com/unlock

5

Creating Our Game World

Now that we have our player, we can turn our a�ention to creating
the world our player will live in. In this chapter, we’ll be
downloading and importing more assets to design, decorate, and
test our first level.

Once the level design is complete, we’ll utilize shaders to simulate
wind flowing through our trees. Then, we’ll get back into C# and
program spawning and collecting items around our world and
conclude the chapter by discovering particle systems to create rain!

So, the chapter will cover the following topics:

Importing world assets
Adding collisions
Designing our first level
Creating movement with shaders
Preparing game physics
Creating and gathering collectibles
Adding rain to our level

Technical requirements

For this chapter, the technical requirements are the same as in
Chapter 1.

All the code from this chapter is available in the GitHub repository
here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Importing World Assets
Much like we did when downloading and importing our textures,
we are going to add a bunch more items to our project. The ones I’ll
be using are again from Kenney Assets, so let’s get started:

1. To access Kenney Assets, visit
https://kenney.nl/assets/nature-kit.

2. Click the Download bu�on and unzip the files wherever you
have downloaded them.

3. Then, click into the Models folder. We will only be grabbing a
specific folder here, called GLTF format . Ideally, you’ll want to
have all your models be in the glTF 2.0 format as it’s the format
supported by Godot.

Note

Godot does not support the FBX format due to it being
a proprietary format. There is a converter available if
using FBX is the only option available. You can
download the converter here:
https://godotengine.org/fbx-import/.

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-
https://kenney.nl/assets/nature-kit
https://godotengine.org/fbx-import/

4. Click and drag the GLTF format folder into our Godot project by
dropping it into the FileSystem dock. A small window will
appear in Godot, showing the import progress.

Once this pop-up disappears, importing will be complete. We can
see all the imported models in the FileSystem dock. You should
notice that every object is a .glb file with a clapperboard icon next to
it.

Figure 5.1: The Import tab of the Scene dock with a floating FileSystem dock

I like to make FileSystem a floating dock, so I can easily scroll
through the various objects within a project. To do this, you can
select the stacked three dots in the top-right corner of the FileSystem
dock. When selected, a new menu will appear, as shown in Figure
5.2.

Figure 5.2: Making the FileSystem dock a floating dock

I want to view both the FileSystem dock and the Import tab, so I can
see the details of the object I’m selecting from the FileSystem dock.
To view the Import tab, click the Import tab on the Scene dock, at
the top of Figure 5.3.

Figure 5.3: The Import tab of the Scene dock

With our floating dock on the right-hand side, we can see a list of
our imported models, as well as the Import tab, as pictured in Figure
5.4. With this, we can select any object from the FileSystem dock,
and its name will appear in the Import tab, where we can reimport it
with some modified options (such as physics options).

Note

You can always search the name of a file if you aren’t
sure where it was imported to in your project. I’ve
created a new folder in our world folder called models
and have placed all the files from the GLTF format folder
in there.

Now, let’s create a new scene by clicking the + icon above the
Viewport, then select Node3D from the Scene dock and drag one of
our objects into the Viewport, as shown in Figure 5.4.

Figure 5.4: Dragging our imported model into a new scene

I’ve selected the log_stackLarge2 one. Once the model is in the
scene, notice that it is packed like our mannequin was. We can tell by
the clapperboard icon next to the log_stackLarge2 node in the Scene
dock. Like in the previous chapter, we want to access and alter its
nodes. To do this, let’s make it accessible by right-clicking and
selecting Editable Children. The object should now be expanded
with a node structure like Figure 5.5 in the Scene dock.

Figure 5.5: Node structure of imported assets once made local

Note

The reason Godot does not save over the original 3D
model is to avoid making changes to that source file.
This is one reason why we might have a large variety
of import options when it comes to adding files.

In this node structure, everything except for the last node,
log_stackLarge2, is a type of Node3D. Instead, the final node is a
MeshInstance3D node. This is what we’ll be a�aching collisions to
in the next section.

Adding collisions
Now that we have a set of items in our project, it’s important to note
that these are only models, meaning they don’t have any collisions
or functions added to them beyond looking nice. We must add
collisions to the meshes provided so that our player won’t run

straight through them. There are a couple of different ways we can
do this:

The first is a method we used back in Chapter 2, where we
a�ached a collision area and then manually changed its size
The second method is having Godot create collisions for us

Let’s briefly step through both methods as each is viable, depending
on your workflow.

Manually adding collisions to imports
In the Import tab, make sure that log_stackLarge2 is selected from
the filesystem; you should see its name appear at the top of the
Import tab.

We won’t need to change any of the se�ings on this tab, but if you’re
interested in knowing what each does, you can read about them
here:
https://docs.godotengine.org/en/stable/tutorials/assets
_pipeline/import_process.html.

Instead, we’ll be clicking the Advanced bu�on that’s at the bo�om of
the Import dock. A new window will appear, called the Advanced
Import Se�ings screen, where you should see the model with its
node structure, as well as more options on the right-hand side, as
pictured in Figure 5.6:

https://docs.godotengine.org/en/stable/tutorials/assets_pipeline/import_process.html

Figure 5.6: The Advanced Import Se�ings screen

On this new screen, you can fully rotate the model and examine it, as
well as zoom in and out with the scroll wheel. This can help ensure
that the model was imported correctly, especially if you are
importing large scenes or objects such as buildings or vehicles.

We can also select each of the nodes in the scene, which will generate
different options on the right-hand side. You’ll notice that the yellow
node with the MeshInstance3D icon can be expanded. If we expand
that, you can see all the materials that are on this mesh, as in Figure
5.7. If you want to only see meshes or materials, you can use the tabs
that are shown at the top of Figure 5.7 too.

Figure 5.7: Expanded node structure on the Advanced Import Se�ings screen

Let’s talk briefly about the nodes listed in Figure 5.7 and why they’re
important when adding collisions, before moving forward. If we
expand out the tree of nodes, we see the scene is composed in the
following way:

Scene: The root node of the tree.
tmpParent: This is a Node3D-type node that is a placeholder for
the object’s resources.
log_stackLarge2: This is a MeshInstance3D node, which means
it includes the Mesh resource and surfaces of the object. When
this node is selected, we can tell Godot what types of physics, if
any, the object should have, as well as the occlusion se�ings.
log_stackLarge_Mesh log_stackLarge: While this node has the
same icon as the previous one, it provides properties based on
shadows and UV mapping. This is the Mesh resource of the
object that we mentioned earlier. A Mesh resource has all the
array-based geometry for an object.

woodBark, woodInner, and woodDark: All of these nodes are
material resources and apply color and shading to an object.
This includes how it responds to light.

Understanding how an object comes together in the engine is
important when importing and adding collisions to it. If we select
the log_stackLarge2 node (which is a MeshInstance3D node, as
denoted by the box icon with a line through it in Figure 5.7), the
options on the right-hand side include one for Physics. If we click
the checkmark and make sure Physics is enabled, then more options
appear. We have some new headers here, specifically another one
called Physics, as shown in Figure 5.8.

Figure 5.8: The Physics options on the Advanced Import Se�ings screen for meshes

You’ll also notice that in the middle of the window, the model now
has lines drawn across it, as in Figure 5.9. This is the collision shape
Godot has generated for us for this mesh once we select for physics
to be generated.

Figure 5.9: Our selected model with collision lines on it

When it comes to the type of physics an object will have, we have a
few different options. The options under Physics, specifically Body
Type, are as follows:

Static: As stated, it will create a StaticBody3D. This is good for
when we have pieces that won’t move or be impacted by
physics, but the player should still not go through them.
Dynamic: This will generate a RigidBody3D. We would use
these objects for things we want physics applied to, such as
vehicles or objects that are unique in their shape.
Area: Creates an Area3D, which is great for floors, walls, and
other general large areas.

After Body Type, there is another field called Shape Type. This
option gives us control over how many triangles should be drawn
for the collision. Does it need to be highly detailed and precise when
it comes to collision, or is it a lone stationary object that essentially
acts like a wall? The answers to these types of questions will
determine which option is applied. We will leave it be for now but
will discuss collisions in more depth in the next section.

For now, let’s go ahead and click the Reimport bu�on. While it may
look like nothing in our FileSystem dock has changed, we have
applied the Advanced Import Se�ings se�ings, which include our
newly generated collisions, to the model we’re reimporting. So, let’s
click back to our Scene dock and make sure we’re in our World
scene. Then, if we drag our log_stackLarge.glb file from the
FileSystem dock into our Viewport, we can test our newly applied
collisions out.

With our object selected in the Viewport, we notice the arrows
coming out from its origin in multiple colors. We can manipulate
this object in three different ways: position, rotation, and scale. To
select each of these modes, we can use the toolbar that’s at the top of
our Viewport. You can find the toolbar by referencing Figure 5.10:

Figure 5.10: The toolbar at the top of the Viewport

Let’s look at the modes in this order, starting with the cursor:

Select Mode: Used to select an object you want to move in the
Viewport. It is denoted with a colored arrow on each axis, as
well as a colored ring on each axis.
Move Mode: Used to move an object by clicking and dragging
one of the colored arrows on the axis you want to move along.
Rotate Mode: Used to rotate an object by clicking and dragging
one of the circles on the axis you want to move along.
Scale Mode: Used to scale an object up or down by dragging the
square ends to scale the object on a specific axis.

Of course, we can manipulate all of these properties precisely from
the Inspector dock of any selected object under the Transform
property.

Note

To toggle between these modes quickly, you can hit
the W key (position), the E key (rotation), or the R key
(rotation) while focused on the Viewport with an
object selected. The Q key will make them all available
via the Select mode.

Once you have the object reasonably scaled in relation to the player,
test the scene out. You’ll notice that the player is unable to run
through it; therefore, our reimport of the model with collisions was
successful.

Now, let’s go ahead and look at another way we could add collisions
that might be useful in a different workflow.

Generating collisions after placement
Since we have added collisions to the object already, you can either
continue to follow this example as is using the log_stackLarge.glb file
or grab one of the other models and open it in a new scene. I’ll be
using the statue_column.glb file for the next example. If you’re using a
new object, remember to unpack the scene by right-clicking and
selecting Editable Children. Once the object is expanded, be sure to
select the MeshInstance3D node in the Scene tab which has the
model and our materials on it.

Now, with the MeshInstance3D node selected, a new bu�on will
appear in the toolbar at the top of the Viewport. It’ll say Mesh, with
the icon for MeshInstances next to it. You can see it on the far-right
side of Figure 5.11. This bu�on only appears when you have a mesh
selected.

Figure 5.11: Viewport toolbar with the Mesh bu�on available

Click the Mesh bu�on and a dropdown will appear with options for
creating different types of collisions. We’re going to select Create
Collision Shape... as adding collisions to the mesh is our plan. Once
clicked, a new pop-up window will appear, as shown in Figure 5.12.

Figure 5.12: The Create Collision Shape pop-up window with options

The first option, Collision Shape placement, provides two choices
from the drop-down menu: Sibling and Static Body Child. We’ll
select Static Body Child. The second option is Collision Shape
Type, and we’ll want to choose Single Convex. Your options should
look like Figure 5.12. Before clicking the Create bu�on, let’s discuss
what the different types of collision shapes are.

Each type of collision creation uses different algorithms to generate
the collisions, and each has its own use case. Let’s discuss the two
main types of collision shapes, which are either convex or concave:

Convex collision shapes: These are created using a mix of
primitive shapes (box, sphere, cylinder, etc.) and concave
shapes. They are good for solid objects and generally any object
that is convex shaped.
Trimesh collision shapes: These are also known as concave
collision shapes and are good for any object. However, as the
name implies, they use triangles to generate collision and can be
quite resource-intensive, depending on the object. They do offer
the most accurate collision, but the use case will vary from
project to project.

Returning to generating collisions for our column statues example,
we want to select something that is good for performance and simple
for collision detection. Looking at our drop-down options, we’re
going to select Create Single Convex Collision Sibling. This option
generates collisions that are good for small objects, as shown in
Figure 5.13.

Figure 5.13: Collisions added to the statue_column model

The blue lines around the edge of the column are the collision shape
that’s been added. Rather than having to set it ourselves, Godot
created it automatically based on the selections we made through the
Mesh resource.

Note

There are a couple of different ways to generate
collisions for our meshes, and it’s important to
understand the difference between both, especially
when you’re working in specific environments or need

to target certain platforms. Being aware of the
geometry that Godot will create and knowing the
different types of collision will help you make be�er
choices when determining assets in your game. If
you’d like to read more about the different collision
shapes, you can do so here:
https://docs.godotengine.org/en/stable/tutor
ials/physics/collision_shapes_3d.html.

Now, you’re going to start building the level and creating a space
that’s entirely your own. You will see screenshots of what I’ve
created in the World scene, but I’ve provided no step-by-step
process for how objects should be placed in your scene. This next
section is a creative and rewarding part of game development, so
take your time and enjoy it!

Designing our first level
After spending time in all the surrounding docks, we’re going to
work in the Viewport for a while as we add models and design our
first level.

The test area that we used for trying out our player movement is
somewhat unnecessary now. Let’s keep it for future testing by right-
clicking the Node3D that’s labeled Floor and selecting Save Branch
as Scene. This option will take the selected node and every child
node under it and make a new scene of those nodes. Therefore, if we
make our floor node the parent of a new scene, we get both the floor
and the boxes we placed for testing in its own scene. Now, whenever

https://docs.godotengine.org/en/stable/tutorials/physics/collision_shapes_3d.html

we want to test some new object or mechanic, we can drop those
objects in there and have a playable area to test in.

Go ahead and pick a model or a few to use for the ground. I am
using the models from the Nature Kit packet provided by Kenney
Assets (they are the same ones we imported at the start of the
chapter); for the ground specifically, I am using models that are
named in the format bridge_objectName. Drag the objects from
your FileSystem dock to the Viewport. They should then appear in
the scene tree. Using the models from the kit along with the ways of
adding collisions that we’ve discussed, go ahead and place them in a
way that you would enjoy as a player.

Figure 5.14: A cute campsite created, using Kenney Assets to design a level

At this point, you might notice that our level is a bit dark. We have
no shadows or sky light. Before we add a node to represent our sun,
let’s create what’s called a WorldEnvironment in Godot. This node
makes many se�ings available to us, such as volumetric fog,

shadows, and other rendering options to make our scene look
sharper.

Right-click on our root node in the Scene dock (the one at the top of
the list) and select Add a Child. Then, search for WorldEnvironment
and add it to our scene. Our WorldEnvironment node has a warning
on it in the Scene dock – hovering over it tells us it needs an
Environment property. The warning is telling us that it can’t work
correctly without pointing to an environment resource, which we’ll
create next.

Now, if we look at our Inspector dock, we’ll find that we have
Environment and Camera A�ributes properties available. From the
Inspector dock, create a new environment by clicking the drop-
down arrow next to the word empty, as seen in Figure 5.15. From the
list, select New Environment.

Figure 5.15: Creating the Environment property

Once created, the environment will appear in the Environment
property. Now, click Environment to access the options available in
Figure 5.12. Many of the options listed deal with light and how
components in the scene are rendered, and there are some fun
options we’ll look at, such as glow and volumetric fog.

Figure 5.16: Options available once the environment is created

For now, let’s expand the Background se�ing and change Mode to
Sky. The Viewport should immediately change in color tone, and a
new property should appear directly below Background called Sky.
Let’s expand the Sky property and create a new Sky resource, as in
Figure 5.17:

Figure 5.17: The WorldEnvironment node with a new Environment and Sky

Click into the Sky we’ve created and add a new Sky Material. Then,
select New ProceduralSky Material. We can click further into this
new material, changing the color of the sky and the horizon, as well
as the ground and sun, as seen in Figure 5.18. Choose a color for the
sky that you’ll enjoy. I’ve gone for a classic sky blue.

Figure 5.18: Options available when creating a Sky Material

As seen in Figure 5.18, there are also options for augmenting the
ground’s color in the Viewport and the sun’s angle. We won’t be
exploring any of these options but feel free to if you want a more
specific skyline or sunrise/sunset.

That’s it for our Sky Material. Let’s minimize the Sky property and
explore a couple of other environment variables we want enabled.

There are two properties we want to enable in our
WorldEnvironment:

The first is SSIL (which stands for Screen-Space Indirect
Lighting), which provides indirect lighting and is often used in
conjunction with other lighting sources. We will discuss lighting
sources more in Chapter 9. For now, expand the SSIL field and
enable it (we won’t change any of the default se�ings).
The second is SDFGI (which stands for Signed Distance Field
Global Illumination), which provides semi-real-time global
illumination. This pertains to global illumination in the scene; if
you’d like to know more, you can read about it here:
https://docs.godotengine.org/en/stable/tutorials/3d
/global_illumination/introduction_to_global_illumin
ation.html#doc-introduction-to-global-illumination-
comparison. Expand the SDFGI property and enable it (again,
don’t change the default se�ings).

https://docs.godotengine.org/en/stable/tutorials/3d/global_illumination/introduction_to_global_illumination.html#doc-introduction-to-global-illumination-comparison

Figure 5.19: The SSIL and SDFGI properties for WorldEnvironment

The last se�ing we’ll mention is Volumetric Fog, which is at the
bo�om of the Environment property list (see Figure 5.20). It’s a new

option in Godot and once enabled, you can see the entire level
covered in a gray fog.

Figure 5.20: The Volumetric Fog property options in the WorldEnvironment

Density and Length are two important options here. Density refers
to how much fog there is. I have set this to 0.04 . Length refers to the
distance at which the fog is computed – the lower the value, the
more detail you’ll get (it’s recommended to run it at a lower se�ing).

I have mine set to 30 . You can see the result of these options in Figure
5.21:

Figure 5.21: The game with volumetric fog on

Note

If you just want to use Volumetric Fog nodes in
specific areas and not the entire scene, you still need to
enable the Fog property in the Environment list (as
listed in Figure 5.16). However, set Density to 0 and
configure the Volumetric Fog node separately in your
scene.

Now, the creation of our WorldEnvironment is complete. So far,
everything is static in our level, so let’s shake things up and give

them life by making our trees look like they’re moving in the wind
with shaders.

Creating movement with shaders
Shaders are an extremely powerful tool when it comes to creating
games. They can set the mood in an environment sky, or they can
generate heightmaps to make terrain. They can be applied to
materials and surfaces to generate all kinds of behaviors to make our
worlds and characters feel like they’ve come to life. We’re going to
use shaders on the tree model that’s in our kit from Kenney Assets,
specifically tree_pineDefaultA2.tscn . If you aren’t super familiar with
shaders, that’s okay. This will be a very brief introduction to what
they are, how they function, and how we can use them in Godot.

Within Godot, shaders use their own language that’s separate from
both GDScript and C#. This is known as a graphics programming
language. One of the more common graphics programming
languages is called OpenGL Shading Language (GLSL). However,
Godot uses its own graphics programming language that’s based on
GLSL. With a separate language, there are, in fact, separate
programs for creating shaders. These programs run on your GPU
and can control both geometry and pixels.

The important thing to remember when creating shaders is that they
are executed when rendering occurs. This means the way we
approach creating functions for them is different than what we
would create in C#. There are also some additional references in the
Further reading section of this chapter that dive deeper into

explaining how shaders function and their role within a game
engine.

Shaders in Godot are made up of what are called processor
functions, which are the main functions of the Godot shading
language. The first is the vertex() function, and the second is the
fragment() function. They can be defined as follows:

vertex() : This function runs over all vertices in a mesh and can
set their position
fragment() : This function is run on every pixel on a mesh

If you want to learn more about the vertex() and fragment()
functions, or processor functions within Godot, you can do so here:
https://docs.godotengine.org/en/stable/tutorials/shader
s/introduction_to_shaders.html#.

We’ll be using the vertex() function to make our trees move back and
forth as if swaying in the wind. To get started, open our
tree_pineDefaultA2.tscn scene, then select MeshInstance3D from the
Scene tree, which should be labeled tree_pineDefaultA2 in the
scene.

From the Inspector dock, we can see the mesh of the tree, as shown
in Figure 5.17. Click the tiny tree image in the Mesh box:

https://docs.godotengine.org/en/stable/tutorials/shaders/introduction_to_shaders.html

Figure 5.22: The mesh to click on when adding shaders to materials

Once expanded, we can see that there are two materials on this
model. The first is under the Surface 0 property. Expand this, and
you’ll see the green material that’s for the leaves, called leafsDark.
The second material is under Surface 1. Once expanded, you can see
that this is the bark of the tree, and it’s called woodBarkDark.

We will only be adding a shader to the leafsDark, or Surface 0,
material, since we only want the tops of the trees to sway, not the
trunk. You can see Surface 0 in Figure 5.23. Click the small down
arrow next to the green sphere (the leafsDark material) and you
should see options for creating a new material or a new shader
material. At the very bo�om of this dropdown, there is a Convert to
ShaderMaterial option. Click this and a new property, called
Shader, will appear.

Figure 5.23: The material after converting it to a shader material

We now need to find the Shader Editor along the bo�om of our
Output dock, so we can write the code we need to augment the
behavior of this material. You can see what the Shader Editor looks
like with the shader we just created in Figure 5.24.

Figure 5.24: The Shader Editor in Godot

Converting the material into a shader material forced Godot to
preserve all the current a�ributes of the material, such as its color
and other behaviors, and generate the code for those same behaviors
in the shader language. We’ll briefly step through what some of
these lines mean and then add our own vertex() function as
mentioned before.

The first line we will look at in Figure 5.20 is line 3:

shader_type spatial;

This code denotes that the shader will be on a 3D object. Here,
spatial covers a wide variety of shader options, which, if you’re
interested, you can read more about here:
https://docs.godotengine.org/en/stable/tutorials/shader
s/shader_reference/spatial_shader.html. Other types of
shaders in Godot are CanvasItems, Particles, Sky, and Fog.

The next line is render_mode – this tells Godot how to render the
material. The previous URL details what each component of this line
entails, but we will not need to change it.

https://docs.godotengine.org/en/stable/tutorials/shaders/shader_reference/spatial_shader.html

After that, there are a bunch of lines with the uniform keyword. This
is how we create variables in the shader language. They can be
nearly any data type, and once declared in the shader script, they’re
available as one of the shader parameters in the Inspector dock. For
example, look at line 5, which says the following:

uniform vec4 albedo : source_color;

Then, click into our Inspector dock for the mesh and look at the
shader parameters of the leafsDark material (see Figure 5.25), and
we can see that we can augment the values of these parameters in
the Inspector dock. These parameters are exported from the Shader
Editor. This makes it very easy to access other variables, such as
noise textures to utilize in our shader programs.

Figure 5.25: The shader parameters available on the leafsDark material

Back to the code, let’s scroll down until we’re at the line that looks as
follows:

uniform vec3 uv2_offset;

Underneath this, we’re going to add our own variables. We want to
make it look like our trees are swaying in the wind, so we’ll create a
wind_strength variable by typing the following:

uniform float wind_strength = 0.02;

We’ve set this variable to something arbitrary (0.02), but you’ll see
that once we save it, we’ll be able to adjust it from the Inspector
dock. So, click File | Save File and then look in our Inspector dock,
under Shader Parameters, for Wind Strength, as seen in Figure 5.26:

Figure 5.26: The Wind Strength variable in the Inspector dock

This is cool, because we can pass many properties to our shader,
since uniform takes almost any data type. Now, we can create our
vertex() function. Declaring it will look like this:

void vertex() {}

The vertex() function doesn’t have a return type, so it’s set to void . It
also does not take any parameters – remember, the shader is running
in a loop over the material, so when we make a change to any of the
vertices, it will change constantly throughout.

Within our vertex() function, let’s go ahead and add the following
line:

VERTEX.x += sin(VERTEX.x + TIME) * wind_strength;

Here, we’re accessing the x channel, the X axis, of the VERTEX variable,
and adding those variables to a sine function (wri�en in code as sin)
that takes in the VERTEX variable and TIME. Adding TIME here
makes the tree appear animated. We complete the statement by then
multiplying everything by our wind_strength .

Our tree should now appear to move ever so slightly on the X axis in
the Viewport. This is a great opportunity to test out what different
shader functions and variables will do to our material. For example,
if we take out wind_strength , the tree will move very far left and right
in the movement of the sin function. This is one of the fun things
about shaders – with each line of code we write, we can see in real
time how it will impact our objects.

If you played around with the code, make sure you’ve reset your
shader code to match the previous line of code I provided before
continuing. Now, we can also go to our Inspector dock and update
wind_strength to see how smaller or larger numbers impact the
animation. Try it out now!

Once you’re done tweaking wind_strength , we’re also going to change
how the Z axis behaves for VERTEX . It will add a bit more depth and
give our tree a fuller body sway. Our line of code will look like this:

VERTEX.z += cos(VERTEX.z + TIME) * wind_strength;

This is essentially the same line as before, except we’re focusing on
the z channel. Using the cosine function here (wri�en in code as cos)
made it look slightly more realistic as it now sways in our artificial
wind. You can try it out with a sine function and see whether you
like that be�er. It’s up to you.

Be sure to save the shader file and the Tree scene. Then, go back to
our World scene and place some trees in it if you haven’t already. If
you already have some trees in there, they should automatically
update and be swaying in the Viewport. Test out the scene with your
player and see whether you like the results. You can always come
back and add more to the shader if you like.

This was just a brief dive into the topic of shaders; there’s a lot more
you can discover with them. Now, we’re going to shift our focus and
look at how to set up and maintain different collision layers, as well
as preparing our player for some in-game physics.

Preparing game physics
Tracking physics can get complicated fast. Rather than keeping tabs
on every single item in an environment, we can set up something
called collision layers and masks.

First, let’s be�er define what each of these are:

Collision layers: These are used to tell objects what layer they
live on.
Masks: These are listeners. They are scanned by other objects to
determine collision.

For example, let’s say we have two objects, Object A and Object B.
Object A lives on Layer 1, and Object B lives on Layer 2. If Object A
has a mask for Layer 2, then Object A can collide with Object B.

Both layers and masks are denoted by a range of numbers. For any
object that has collision (such as a MeshInstance3D, aka the
StaticBody3D from our mushroom item), we can augment the layers
and masks. You can see how they look in Figure 5.27 under the
Inspector dock of the selected collision object. By default, each layer
and mask are set to 1; as all objects are on Layer 1 and scanning for
Layer 1, everything can collide with everything.

Figure 5.27: The view for collision layers and masks from the Inspector dock

We’re going to set up three layers: the first one will be for our player,
the second one will be for our collectible items, and the third will be
for the world. This will allow us to keep track of what our player is
colliding with and what the autonomous objects we create
throughout the book are running into as well.

To create our layers, we can click the three vertical dots to the right
of the Layer box shown in Figure 5.27. It will give the Edit Layer
Names option. Click it, and it will open a new window that’s part of
Project Se�ings. For the first three layers, add the player, collectible,
and world in the following order, as seen in Figure 5.28.

Figure 5.28: Creating the layer names for our collision layers and masks

Note

Notice that within Project Se�ings, we’re in the Layer
Names section, and specifically under 3D Physics, not
3D Render, which also has a list of layer names.

Once that’s done, click the Close bu�on.

Now, let’s set the layers and masks for some objects we’ve already
created. For anything we’ve placed in the world so far, we want to
make sure that the StaticBody3D nodes placed to provide collisions
are set to Layer 3, which is the World layer. Rather than
remembering that Layer 3 is the world one, you can click the three
vertical dots next to the Collision property (just like we did when
editing the layer names), and you’ll see that our three layers are
checkbox options. Select world for all ground pieces, trees, and so
on, as shown in Figure 5.29:

Figure 5.29: Adding an object to the world layer via the Inspector dock

As you probably guessed, we’re going to switch to creating a new
scene, a mushroom item, that our player will be able to pick. We’ll be

utilizing masks later in the chapter, but for now, having the layer set
up and understanding the difference between the two is sufficient.

Creating and gathering collectibles
With our world feeling more alive and cozier by the minute, let’s
add some simple mechanics that our player can perform, such as
picking up items. To set this up, we’ll take a mushroom model we’ve
imported, add collisions to it, set its layers and mask values, and
then write a script to tell the mushroom when it’s collided with the
player.

Setting up our model
To get started, let’s pick a model to serve as our collectible item. I’ve
decided that our character will be foraging through this cute forest
area and will be collecting mushrooms.

Create a new 3D scene and drag one of the mushrooms into the
Viewport. I’ve selected the mushroom_red.glb model. Once it’s in
the scene, right-click the node and select Make Local. Then, from the
Scene tab shown in Figure 5.30, right-click the mushroom_red node
and select Save Branch as Scene.

Figure 5.30: The node structure of our mushroom item

When you click on the mushroom_red node, the properties shown
in Figure 5.31 will appear in the Inspector dock. Personally, I felt the
mushroom was too tiny in relation to our player and the rest of the
world, so under Transform, I set the Scale property to 3 on every
axis.

Figure 5.31: The Transform property of the mushroom_red node

We now need two more nodes before this node structure is complete
– a physics body and a collision body. So, right-click our
mushroom_red2 node, which is also the MeshInstance3D here, and
add a new node of type StaticBody3D. Remember, StaticBody3D is
our physics body here.

In previous chapters, we would have added CollisionShape3D
manually, but let’s use the way we learned at the beginning of this

chapter. Select the mushroom_red2 node, click the Mesh bu�on
that’s at the top of the Viewport toolbar, and select Create Single
Convex Collision Sibling. A new node will appear in the scene tree
called CollisionShape3D, and you should see collision lines on the
mushroom model in the Viewport. It should look like Figure 5.32.

Figure 5.32: The current node structure of our mushroom item

We have two warnings on both StaticBody3D and
CollisionShape3D. This is due to the ordering of our nodes in the
scene; the two aren’t aware of each other. To fix this, we need to
make CollisionShape3D a child of StaticBody3D. So, reorganize the
scene tree to look like Figure 5.29, and the warnings will go away:

Figure 5.33: The complete node structure for the mushroom item up to this point

As we discussed in the previous section about the importance of
collision layers, we need to set the layer for our mushroom item.
Let’s do the following:

1. Select StaticBody3D.
2. In the Inspector dock, under the Collision property, let’s set the

Collision layer to be on Layer 2, which is, if you recall, what we
set our collectibles to be back in Figure 5.34.

3. While in the Inspector dock, we also want to deselect Layer 1
collision and remove it from the mushroom object, since they
aren’t our player. Remember, Layer 1 is for our player’s
collisions only.

Remember, our player is on Layer 1, and we want our player and
our collectibles to be on separate layers; our player has no awareness
of Layer 1 (there are no other players), so our collisions wouldn’t
work if we left the collision layers in their default state.

4. Now, look at the Mask layers. The mask se�ings for our item
should be Layer 1 only. Mask se�ings are used for objects to
listen to other objects. Our player is on Layer 1, and our
mushroom is listening to Layer 1, so the mushroom will know
when the player collides with it.

See Figure 5.34 for the collision layer and mask se�ings for a visual
guide on what to set for layers and masks.

Figure 5.34: The collision layer and mask for our mushroom item

With the collision configured for our mushroom item, we can turn
our a�ention to adding a script to add functionality to it.

Adding a script to the mushroom
object
Just like we did with the player, when we completed our node
structure, we went ahead and created a script to a�ach it. However,
we won’t be a�aching the script to the root node of our
mushroom_red scene. Instead, we’ll be a�aching a script to

StaticBody3D. There are two specific reasons why we’re a�aching it
to our collision node. The first one is that we want to trigger
functions when our player collides with this object. The second is we
want to reuse this StaticBody3D in other objects we may deem as
collectibles.

Reusing one singular component leads to the idea of composition,
which is largely what Godot’s node system is. Composition is
having one component serve its most singular function, which
makes it reusable and easily extendable. We’ll apply this idea later
when we create a different type of collectible, but for now, mentally
bookmark the idea.

Back to a�aching scripts to our mushroom item, start by right-
clicking StaticBody3D and selecting A�ach Script. We’ll get the
following pop-up menu to create a new script, shown in Figure 5.35.
At this point, it should already be set to C#, since we’ve already
created a script in the project.

Figure 5.35: The pop-up menu for a�aching a script

Rename the script CollectibleTrigger . Our plan is to have this script
fire after our player collides with the mushroom object in the world
and then we can do whatever we want with it, such as increment
how many mushrooms we have, give us points, or heal us – it’s
totally up to us! Now, click Create.

As before, we’ll see our default functions of _Ready and _Process when
we create the C# script (which we utilized in Chapter 4 when
creating our player script). However, here we will be creating new

functions. Instead, we’re going to create a function that will delete
the mushroom item and call PickUp , which we’ll trigger when our
player collides with the mushroom (more on this in the next section).
We only need to put one line in the function, so PickUp will look like
this:

public void PickUp()
{
 this.GetParent().QueueFree();
}

The function we created, PickUp , will utilize some built-in Godot
functions, such as GetParent and QueueFree . The GetParent function gets
the parent node, which will be the Node3D named mushroom_red . You
can look back at Figure 5.29 to see the node tree. The function called
QueueFree prepares a node for deletion at the end of the frame and
deletes all its child nodes, which is what we want to happen when
we collide with it.

In the game, the mushroom will disappear. By disappear, I mean
that it will be removed from the World level visually, and it will also
be removed from the scene tree hierarchy. When we test our game,
be sure to look at the scene tree and notice if it’s removed. When the
game stops running, they will return as QueueFree is triggered only
during runtime.

Note

We must call GetParent before calling QueueFree , because
remember this script is not on the root node of our
scene. If we only called QueueFree , we would delete the

collision and not everything else. GetParent accesses
the parent node of our StaticBody3D, which is the
MeshInstance3D, and promptly removes it.

With the node structure complete and our collectible scripted, let’s
spend a moment ge�ing our player script ready for registering
collisions and discerning whether our player is touching the ground,
a mushroom, or any other object we place in our scene.

Checking player collisions
Our player is going to be running into all types of objects, and
sometimes we’re going to want to know which type of object that is,
so we can perform some specific function in our game. For example,
we want to know when our player is touching the ground, so it
doesn’t fall through it, but we don’t necessarily need to know what
every object on the ground is. In the case of our collectible item, we
want to know when the player collides with it, which we’re able to
do by ge�ing a list of all current collisions per frame from our
player.

To do this, we’re going to switch from the Editor back into our
player script from the previous chapter. Here, we’re going to create a
new function that checks whether we’ve run into an item. We’ll place
this after the conversion function we created that allowed us to
convert degrees to radians. The function name and parameters look
like this:

public void CheckForCollectibleCollision()
{

}

Note

For me, I’d rather have slightly longer function names
that tell me exactly what they do, rather than having
to guess it. I’m also a big fan of the summary comment
that can be created when writing C# – to create a
summary function, type three forward slashes (///)
above the function, and it should auto-create it.

Of course, our Player could hit multiple objects at once before
MoveAndSlide is called again. Remember, MoveAndSlide is called
in our Player script to process physics and is a built-in Godot
function from the CharacterBody node. For reference, we created a
2D version of this in Chapter 2 and our 3D version is in Chapter 4.

To find out what is colliding with our player, we’ll use a function
called GetSlideCollisionCount to tell us what the number of contacts
with the player is. So, inside our new function, we’ll create a loop to
iterate through those collision contacts:

for(int index=0; index < GetSlideCollisionCount(); index++){}

At each iteration of our loop through these collisions, we’re going to
get more information about those collisions, specifically what type
they are. What we’re going to do is create a collision variable that is
going to hold the collision that we want more information about at
each iteration of the loop, like so:

KinematicCollision3D collision = GetSlideCollision(index);

GetSlideCollision is what will tell us more information about the type
of collision our player has hit. Now, we’ll add an if statement to
check whether what we collide with is in a type of CollectibleTrigger
that we created earlier. The if statement will look like this:

if (collision.GetCollider() is CollectibleTrigger collectible)
{
 GD.Print("Collided with collectible");
}

Once we have our collision object, we check the collider on it and see
whether it’s of the CollectibleTrigger type with the C# is keyword.
I’ve added a print statement that will output on the Godot console to
say whether we’ve collided with the collectible. Our complete
function should now look like this:

Next, drag the mushroom_red.tscn scene from FileSystem into the
Viewport and place it within the player’s walking area. Now, let’s
test it out and see what happens. We should get a line of text in the

public void CheckForCollectibleCollision()
{
 for (int index = 0; index < GetSlideCollisionCount(); index++)
 {
 if (collision.GetCollider() is CollectibleTrigger collectible
 {
 GD.Print("Collided with collectible");
 }
 }
}

Output console that looks like Figure 5.36 when our player collides
with the mushroom.

Figure 5.36: The Output console when the player successfully collides with our mushroom

Yay! We’re correctly detecting collisions with our player on our
mushroom item. Next, we need the player to pick up the mushroom
and not just run face-first into it.

Picking up our mushroom item is super easy, since we’ve already
laid all the groundwork for it in our CollectibleTrigger script.
Remember the PickUp function we programmed in there? Now, we
have a place to call it. Inside this if statement we just wrote, we’re
going to write the following:

collectible.PickUp();

With this line, we are referencing an object that has the
CollectibleTrigger type script on it; then, we’re using that object,
collectible , to call the PickUp function, which is inside the
CollectibleTrigger script. Essentially, we only want the mushroom to

disappear from our world if the player collides with the mushroom’s
collider. Once that happens, delete the mushroom from our world.

Now, save the script and test the scene out. When our player walks
into a mushroom, the mushroom should disappear, and we should
still have our print statement in the Output dock. This is great and
all, but we’re probably going to want more than one collectible on
our level. How can we do that? We’ll use the idea of composition as
mentioned earlier to achieve it.

Creating multiple collectibles
Cool, so we have a mushroom item that our player can pick up, but
we are probably going to want more than one to pick up throughout
our level. Let’s take a moment to make that happen.

In our mushroom_red.tscn scene, we have a StaticBody3D for
collision, and it has a script we a�ached to it in a previous section to
delete it from our scene tree when the player collides with it. Rather
than manually replicating this node and a�aching the script to any
object we want to make an item, we can save this StaticBody3D as
its own scene. By doing this, we’re using composition and saving
ourselves redundant work.

To do this, let’s right-click on our StaticBody3D node from the
mushroom_red.tscn node structure and select Save Branch as
Scene. A prompt will appear to ask you what name to give this
scene. I have named mine PickupComponent . This will create a new
scene with StaticBody3D and CollisionShape3D.

A clapperboard icon appears next to StaticBody3D in our
mushroom scene, as shown on the left-hand side of Figure 5.37. If we
click the clapperboard icon, it will open the newly created scene, as
shown on the right-hand side of Figure 5.37. We can delete the
CollisionShape3D node here and have a single node of the
StaticBody3D type with our CollectibleTrigger script a�ached.

Figure 5.37: mushroom_red.tscn with a packed scene (left) and the packed scene expanded (right)

Now, save this scene and test the scene again to make sure we didn’t
break anything (we always want to check this anytime we make
significant changes to our project).

With our functionality preserved, let’s grab another mushroom
model. I’m selecting the mushroom_tanGroup.glb one. We’ll create a new
scene and drag the model into our scene tree. Now we need to
expand this model to access the mesh. To do that, click the
clapperboard icon next to the node, and a popup as in Figure 5.38
will appear. We want to click New Inherited, which will create a
new scene with that model’s nodes in it.

Figure 5.38: The popup for creating a new scene from imported models

Once we’ve clicked this bu�on, a new scene with the mesh will be
created – name it something you’ll remember; I’m leaving it as
mushroom_tanGroup.tscn.

Let’s click the mesh and add some collisions just as we did for
mushroom_red.tscn. This will require selecting the mesh, clicking
the Mesh bu�on above the Viewport, and selecting Create Single
Convex Collision Sibling. Now, previously, we would have created
a new node to add our StaticBody3D here, but we already have one
created with the script we need. Instead, we’ll drag our
PickupComponent.tscn from FileSystem onto the Viewport. Once it’s in
the Viewport, it will be added to the scene; make sure to parent the
nodes correctly as in Figure 5.39:

Figure 5.39: The complete node structure for our second mushroom item

Save the scene, and let’s place it in our world with the other
mushroom. I’ve placed them under a Node3D that I’ve renamed
Collectibles to keep them together. Be sure to place this second
mushroom in a scene that’s within the walking path of the player
and test it out. We should be able to successfully walk into both
mushrooms and have them disappear. We should also now see two
print statements in the Output dock that say Collided with
collectible from our print statement in the script.

Now, we have two types of mushrooms we can collect in our world.
With these systems in place, let’s take some time to build out our
level some more. We’ll do this by adding rain to our level.

Adding rain to our level
Currently, we have a sun and the beginnings of a cozy area for our
player to explore in. Let’s add some more atmospheric effects by
creating rain and adding some fog to the level to change the
ambiance of the game. We’ll be adding rain by creating a particle
system. This is a common use case for particle systems, but don’t let
that suggest that that’s all they’re used for. Particles can be used for
simulating fire, explosions, space debris, air bubbles, weather
pa�erns, and more.

In our World scene, click on the plus sign above our Scene dock, as
seen in Figure 5.40. This will add a node as a child of our root node,
which is exactly what we want.

Figure 5.40: The plus sign to add child nodes of the root node in a scene

We are looking for 3D particles, specifically the GPUParticles3D
node. You may have noticed, when searching for the
GPUParticles3D node, that there were also CPUParticles3D nodes.
While these are both viable options, the GPU version allows for
more customization when it comes to creating particles and
therefore is the preferred one in this instance.

Select the GPUParticles3D node type and a box will appear in the
Viewport at the origin with gold lines. In the center of it, there will
be a white cloud icon, as pictured in Figure 5.41. The gold lines
indicate the bounds of where the particles will be generated.

Figure 5.41: The GPUParticles3D node in our levels

When you select the GPUParticles3D node in the scene dock, you
will see a lot of options for configuring them. The three properties
that are active by default are as follows:

Emi�ing: This is a checkbox that, when selected, ensures the
particles are active and seen in the Viewport.
Amount: This is the number of particles that will be generated
in each frame. To start, let’s set Amount to something much
larger than 8, such as 500 . You can increase it further, depending
on the type of storm you’re going for; maybe it’s a light drizzle,
and there aren’t that many drops, or maybe it’s a downpour,
and there are thousands. It’s up to you!
Sub Emi�er: This is when we want to utilize another particle or
VFX effect to trigger as particles are being spawned. It allows us
to have another particle or VFX nested into an existing one. This
is very useful when it comes to VFX work.

Beyond the default options, let’s look at a few of the other properties
to make sure our particles come a li�le bit closer to looking like rain:

Time: This property details the way a single particle will
behave. We can set how long the particle should exist in the
scene and whether it should emit only once, as well as adjusting
the particle’s positional behavior.
Collision: This determines the distance for the particles to
collide.
Drawing: This is the size of the Axis-Aligned Bounding Box
(AABB), that is, the gold lines we mentioned earlier. You can
augment them here by dragging any of the dots that appear on
the sides of the bounding box. You can also use the parent
node’s coordinates by se�ing the Local Coords property to be
true or augmenting the order in which particles are drawn and
whether they’re tied to any axis.
Trails: This relates to the tail end of a particle. If enabled, we can
augment the time you should see the tail end of a particle.
Process Material: We’ll be diving quite a bit into this one as
we’ll need to create a process material to generate our particles.
This is the material for how the particles will appear in the
game, such as the shape, size, and color. Once a process material
is created, we can augment the way it is generated in the AABB
through gravity, color, direction, and more.
Draw Passes: Here, we determine the mesh(es) to generate and
can change their size and shape as well as the material. We’ll
also be spending more time in this section on making our
particles appear more rain-like.

With all of these properties available to us, there’s a lot of
customization when it comes to creating particles. Whether we’re
making something that’s for a campfire or rain or a cool special
effect when a player casts a magic spell, the ideas are endless and up
to the developer.

Now, as mentioned, we’re going to spend most of our time on the
Process Material and Draw Passes properties. So, let’s go ahead and
expand the Draw Passes section; we’re diving into this property first
so we can see how the particles behave as we update them.

In the expanded Draw Passes area, we can see Pass 1. Click on the
drop-down arrow next to it and create a New RibbonTrailMesh. We
should now see a square strip, running the length of our
GPUParticles3D box. It will look something like Figure 5.42.

Figure 5.42: The Draw Passes options for particles

Let’s reduce Section Length to 0.02 to shorten the ribbon mesh and
make it look more like falling raindrops. We can also reduce the
number of sections on the mesh – by default, it’s set to 5, but I have
set mine to 3 .

The last se�ing we’ll change here is creating a curve to shape our
ribbon mesh into more of a raindrop. Currently, we still have blocky
squares for particles, so we will create a curve to be�er shape it. To
create the curve, or shape, for our mesh, we need to click into the
empty box next to the Curve property and create a new curve. As we
augment the properties in the Draw Passes property in the next
paragraph, Godot will auto create the graph of the curve for us. A
graph will appear below the Curve property, as seen in Figure 5.42. If
we set Max Value, it will be easier to create our points along the
curve, so set this to 0.1 . As you can see in Figure 5.42, I have three
points along my curve. I start at 0 and then go up to 0.1; then, I end
up back at 0. You can add points by clicking on the graph, starting
from the first point at 0, and following along the curve you create.

With our particle more clearly defined as a raindrop, we can go
ahead and create the material that will generate the particles and
determine their collective behavior. To do so, now expand the
Process Material property in the Inspector dock. The only option is
to click the empty box and create a new material for the particles. So,
select New ParticleProcessMaterial. Then, when you click on the
newly created material, you’ll get options that look like Figure 5.43.

Figure 5.43: The options available for a process material

Expand the Spawn property and select Box next to the Emission
Shape property. Currently, the Box property is set to Point by
default, but this means all our particles would spawn in the same
spot in our AABB, which we don’t want to happen. We want them to
spawn throughout the box space, so make sure Box is selected in the
dropdown, as shown in Figure 5.44.

Below the Emission Shape property is another property called
Emission Box Extents, as shown in Figure 5.40. Here, we want the

particles to cover the entire level and sit slightly above the level. I’ve
set mine to be X: 50, Y: 10, and Z: 50. Depending on how you built
your level, your box extents may be set to different points (if you’re
covering your sky, it will be fine).

Figure 5.44: Se�ing the position and shape of our particles

You may have noticed that the direction our raindrops are flying in
the box extents is not right. By default, they are zipping across our
level sideways. Under the Direction property, we want to set Y to
-1 , so our raindrops appear to be falling. We can also set X to 1 ,
which makes our rain come across tilted as if a strong wind were
pushing it that way. With X and Y configured, we may want to
strengthen one of these axes. I changed Y to -3 to make the slant in
the particle slightly less dramatic. There’s no need to set Z to
anything here, but you can if you want to make your rain look like
it’s been pushed back by the wind.

So far, we’ve set Emission Shape and Direction. Now, we’ll look at
se�ing various velocities. Before doing that, do note that the Gravity
property, by default, is set to -9.8 on the Y axis. Now, expand the

Initial Velocity property and you’ll see options for Velocity Min
and Velocity Max inside it. The higher the velocity set for the
particles, the more of a torrential downpour it will appear to be in
your game. I’ve set my Velocity Min to 100 , and my Velocity Max to
150 , but feel free to tweak these numbers to your liking.

There are two more properties left for us to modify, and those are
Color and Collision. Both will be quick adjustments, and then our
rain will be complete! Inside the Process Material properties, let’s
expand Display. There is a property there called Color. Click the
color box and set its hex code to #D5E6F2, as shown in Figure 5.45.

Figure 5.45: The Display properties for our process material

Once that’s set, we can collapse the Display options. The last process
material property we’ll look at is Collision. Expand it and look for
the property named Mode. We’ll set it to Hide on Contact. This

means when the particles collide with an object in our World scene,
they’ll disappear. You can see how this looks in Figure 5.46.

Figure 5.46: Collison properties for rain particles

Once both the Color and Collision properties have been set, we can
look back at how the rain is behaving in our World scene.

Figure 5.47: The rain effect completed and existing in our world alongside fog

Our World scene is feeling more and more alive with all the
dynamic elements we’re adding. We spent some time building a
level and adding items and effects for our player to interact with,
which will give them more immersion as they explore the space
we’ve created.

Summary
This chapter covered a wide variety of topics that all related to how
the player interacts with our world. We started by importing our
assets and discussed two methods of adding collisions. We started
designing our level and spent time with shaders, leveraging their
use to simulate wind blowing through our world.

After such a long chapter on the 3D aspects and lighting, we will
turn our a�ention to the UI. We’ll look at using Godot’s UI theme
editor to create a cohesive style that’s easy to implement. After that,
we’ll create a main menu, add animations to our menu, and look at
how to create a se�ings page with volume sliders for music and SFX.

Further reading
The Book of Shaders: https://thebookofshaders.com/
Godot Shaders: https://godotshaders.com/

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases

https://thebookofshaders.com/
https://godotshaders.com/
http://packtpub.com/unlock

made directly from Packt don’t require an
invoice.

6

Developing and Managing the
User Interface

Our world is coming to life, and our player can explore and react to
that world. Now, we need to provide feedback to the player about
what they can interact with, collect, and use. The most common way
this is conveyed is through user interfaces (UIs). This is everything
from the main menu to start the game, all the way to menu screens
for selling items at a shop. Anything that’s interfaced in a 2D
capacity is part of the UI.

In this chapter, we’ll be creating our main menu where you’ll start
the game. To create the main menu, we’ll utilize a variety of control
nodes such as panels and bu�ons. We’ll also add functionality to the
Play, Se�ings, and Quit options, and when the player selects the
Play bu�on, we’ll create a short animation. After this, we will create
a Se�ings menu that includes two volume sliders and a Close
bu�on.

Our goals for this chapter will be the following:

Introducing control nodes
Creating a UI theme
Adding a main menu

Designing a Se�ings screen
Adding a Close bu�on

Technical requirements
For this chapter, the technical requirements will be the same as in
Chapter 1.

All the code from this chapter will be available in the GitHub
repository:

https://github.com/PacktPublishing/Game-Development-
with-Godot-and-C-.

Introducing control nodes
When we first opened Godot and were asked what type of scene we
wanted, we were presented with three options – 2D Scene, 3D
Scene, and User Interface – as shown in Figure 6.1:

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-

Figure 6.1: The Scene dock options when creating a new scene

So far, we’ve dealt with the 2D Scene and 3D Scene options. Now,
we’re going to explore the User Interface nodes. Below that, there is
another option called Other Node, which allows you to select a more
specific node that belongs to one of the three existing node types.
Instead, we’re going to explore the realm of creating a seamless UI.

So, let’s create a new scene by clicking the + sign above the Viewport,
as we did in previous chapters. Then, from the Scene dock, click the
User Interface option for our scene type. The root node of this UI
scene will be a control node. The Viewport will change to a 2D view
and will look like Figure 6.2:

Figure 6.2: The Viewport after creating a UI scene

Notice the origin sits in the top-left corner of the screen. This will
become an important detail to note when anchoring our UI elements
as we design additional UI elements that cover the screen (such as
the main menu and pause screen).

With this 2D view set, let’s add some more control nodes to get
familiar with how they function. Control nodes are 2D nodes that
are used to create rich and responsive UIs. Everything from bu�ons
and sliders to containers is included in control nodes. Let’s walk
through creating our first control node:

1. Right-click the existing control node, or click the + sign above
the dock, and add a child node.

All the UI nodes are control nodes and so have a green color
(matching the User Interface icon color back in Figure 6.1). We can
see a list of them if we expand the Control nodes out, as seen in
Figure 6.3.

2. Select Label from this list and add it as a child node. Labels are
control nodes that focus on providing text to our UI:

Figure 6.3: The selection of control nodes available

Once we’ve added it, the Viewport will create an empty box with
green points on each corner, as seen in Figure 6.4:

Figure 6.4: The Viewport with a label created and the anchor points si�ing at the origin

The green points are the anchors for our label. Anchors are used to
preset the way UIs will appear regardless of the platform or device
they’re on. They’re an essential part of a UI, especially when you’re
launching a game on multiple platforms. The Label node has four
anchor points, which again are represented by the four green pins
that, by default, appear at the origin. Wherever we position the label,
we’ll want to set the anchors accordingly. Typically, the pins will be
around the node, but they can be placed anywhere. Just remember –
the UI will scale according to its anchors. We’ll discuss this more
later as we further develop our UI.

The eight dots around the edge are the bounds of the Label node.
We can resize the label to be bigger or smaller by dragging any of the

eight dots, and we can also move the label by clicking and dragging
inside the bounds.

Currently, the label is blank because we haven’t put any text in it.
Select the Label node in the Scene dock, and in the Inspector, we
can explore the Label properties. The first property listed is the Text
property. By default, it is empty. Go ahead and type the word Test in
it, as seen in Figure 6.5:

Figure 6.5: The default label properties with the word “Test” wri�en

Below the Text property, there is a Label Se�ings property. Click the
down arrow next to the empty box and select New LabelSe�ings.
This will give us options we need to augment how the text is
displayed, as in Figure 6.6:

Figure 6.6: The Label properties with label se�ings added

If we expand the Font option after creating our label se�ings, we can
set the font’s size. The default size is set to 16 , but that is quite small

and may be hard to read, so we will change it to 32 pixels instead. In
the Viewport, you should see the word Test automatically update in
real time, with the result shown in Figure 6.7:

Figure 6.7: Adding text to our label, with a size of 32 pixels

While we only covered the details of one control node, the important
thing to remember is how to anchor them. We’ll cover other types of
control nodes throughout the chapter, and while the properties of
them may change, the general overall structure will not.

Now that we have a be�er understanding of how control nodes
operate, let’s apply what we know to create a theme for all our
control nodes.

Creating a UI theme
With an understanding of what control nodes are, we can start
looking at creating a theme for some of the menus we’ll be
designing. A UI theme is the idea that we can design and create the
way a specific control node behaves and then all other control nodes
of that same type will also behave the same way. It’s easier to

understand through an example, so let’s create a new theme and
jump right in.

Navigating the Theme Editor
From our practice scene, we can do the following:

1. Select the root Control node from the Scene dock.
2. Then, look at the Inspector dock of the selected node. Here, we

have a list of properties that we can augment.
3. Expand the Theme property out, and you’ll notice it’s currently

empty. As we’ve done with previous properties, click the drop-
down arrow next to the empty box and select New Theme.

By clicking New Theme, we are creating a Theme resource. This will
look like Figure 6.8:

Figure 6.8: Creating a new theme on a control node

Once created, a new panel called the Theme Editor will appear on
the Output dock, as in Figure 6.9. You may also notice we have some
additional properties available now that we’ve created a theme in
the Inspector (we will explore more of these shortly):

Figure 6.9: The Theme Editor on the Output dock

As you can see in Figure 6.9, the bulk of the options are under the
Default Preview tab. The huge benefit to this is that once we style a
control node, we can see how it will look in Preview mode under
this tab. All you need to do is hover or click, depending on the state
of the control node, on the control node you want to preview in the
Default Preview tab. For example, if we want to see how a Bu�on
control node will react, we can click or hover over Bu�on in this
Default Preview tab to see how it behaves depending on those
states. This makes it super easy to style the UI without needing to
create and place it in your scene.

On the right-hand side of the Theme Editor, you can see a variety of
bu�ons, tabs, and toggles. We can customize each of these UI types
here, and when we do, every time we call a node of that type (when
the Theme resource is applied to the scene), it will be styled in the
same way we styled it in this theme. Do note that the UI type

selected on the right-hand side will determine what properties are
generated to customize and change on the right-hand side of the
Theme Editor.

Note

If the Theme Editor disappears for any reason,
navigate back to the node where you created the
Theme resource and click on it. The Theme Editor
should reappear then.

Creating our first UI type
To be�er understand how to navigate the Theme Editor, let’s create
and style a Play bu�on. To start augmenting the bu�on object, click
the + sign in the top-right corner of the Theme Editor as seen in
Figure 6.10, right next to the Type drop-down menu:

Figure 6.10: The Type selection within the Theme Editor

Once you click the + sign, a new window will appear, as in Figure
6.11:

Figure 6.11: The Add Item Type window in the Theme Editor

Next, search for the word button and select Add Type. Now, the
Bu�on type should be the selected UI object in the Type dropdown
of the Theme Editor.

Back in Figure 6.10, below the Type dropdown, there are two
options:

The first is Show Default – with it toggled on, you’ll see all the
various states the type can be changed to. Make sure Show
Default is toggled on.
The second is the Override All bu�on – this is to override the
style of a UI type that’s not the base version of the control node
type. We will leave it as is for now.

After these two options, we have the property tabs as seen in Figure
6.12. These are the tabs to style each theme type we’ve added to the
Theme Editor. This is a great panel to access because we can change
multiple StyleBox resources at once without worrying about
updating each one:

Figure 6.12: The property tabs for theme types

These small symbols pack a lot of information, so let’s break down
what’s inside each one:

Color: This allows you to change both the font and icon color of
a theme type, specifically in various states such as hover, click,
or disabled, to name a few.
Constants: These are specific parameters that should apply to
all theme types, such as the outline size or the height separation.
These values will vary based on the theme type selected.
Font: This is simply the place to upload font files to use when
creating text for a theme type.
Font Size: This property allows you to adjust the font size for all
versions of a specific theme type.
Icons: Here, we can add multiple icons and create textures to
overlay with a theme type. Adding iconography is a very useful
way to communicate what an item or menu does.
StyleBoxes: This is the tab we’ll primarily be working on. Each
StyleBox resource we create will give us the ability to alter the
way a theme type should look. Just as with the Color property,

we can augment the way a theme type appears depending on
the state it’s in (pressed, hover, focus, and so on).
Custom Se�ings: This is for creating theme-type variations. For
example, say we created and styled some bu�ons – though they
have the same shape and design, they may differ in color, fonts,
and type. We could create a type of variation that builds on top
of the original Bu�on theme type we created, then we can alter
it as needed.

While we won’t use all the property tabs listed in the Theme Editor,
it’s good to know how to navigate this space, especially since there’s
a lot of customization available.

With the Bu�on object set to the selected type, select the StyleBoxes
property tab. Here, we can see more options, as shown in Figure 6.13:

Figure 6.13: The styling options for the selected UI object in the Theme Editor

On the left-hand side of Figure 6.13, we can see a list of the different
states a bu�on can be in. Across from that, each bu�on state has a
StyleBoxFlat component with a + sign next to it. This means we can
style the bu�on to look different, depending on the current state the
bu�on is in. Let’s go ahead and change the style of the bu�on for its
normal (aka default) state.

Click the + sign for the normal state, and it will add an empty box, as
in Figure 6.14:

Figure 6.14: Creating a new bu�on state

When you click the dropdown, a variety of options will appear:

StyleBoxEmpty: An empty StyleBox resource that does not
display anything.
StyleBoxTexture: Adds a texture to the StyleBox resource and
alters how a UI object looks.
StyleBoxFlat: Customizes the way the UI looks by manipulating
various properties (for example, Color, Font, and so on) and
does not require a texture.
StyleBoxLine: Displays a single line often used to add textured
or colored separators to demarcate the UI. They can also be used
in sliders and for framing different pieces of the UI.

For our purposes, we’re going to select StyleBoxFlat since we have
no textures to include in the UI. However, we can still achieve a very
customized look, leveraging the properties provided by Godot.

Once the StyleBoxFlat option is selected, it will replace the empty
drop-down box. Then click the StyleBoxFlat resource, and the
Theme Editor will disappear, providing a new window in the
Inspector dock, as in Figure 6.15:

Figure 6.15: The StyleBoxFlat properties in the Inspector

The grayed-out image in Figure 6.15 is the current preview of the
style for the bu�on state. As we change the nested properties, the
box will update in real time, so we can see if the style changes are
what we want to use for our game. Let’s go through each property
and make the following changes:

Border Width: Here, we’ll set all the edges (Left, Top, Right,
and Bo�om) to 3 pixels. You’ll see the edge of the bu�on
padded by a gray and white color in the Inspector dock right
above the BG Color property, as seen in Figure 6.15.
Border: There are only two options here:
Color: Currently, this is set to gray and white, which we’re
seeing now. Select the colored bar and set it to something that
contrasts with the current bu�on’s color. I’ve chosen a dark blue
that you can create using the #163660 hex code.
Blend: This is a toggle for blending the border color into the
bu�on color. It’s up to you whether to leave this enabled or not,
depending on the colors you’ve chosen. I’ve checked it for our
project.
Corner Radius: This property rounds the corners of our bu�on.
We can round only the top left and right corners of the bu�on to
give it a softer look. We can also round either corner or all of
them. I am going to round them all by se�ing each corner to 5
pixels.
Expand Margins: This pads the margins of the bu�on out. We
can make the bu�on much bigger than the text, if needed, or

design it to hold a sprite instead. I’m only padding the left and
right margins to 3 pixels.
Shadow: This se�ing provides the ability to create shadows
around the UI object and is broken into three options:
Color: This sets the color of the shadow around the bu�on. You
can play around and see if there’s a color you like, but I will be
leaving this in its default state.
Size: The size of the shadow, which I’ve set to 2 pixels.
Offset: The offset is where the shadow sits around the bu�on.
Say you want the bu�on to look like it has some depth; you
could set the shadow to be offset on the X-axis and the Y-axis.
I’ve set both to be 2 pixels on mine.

With these properties set, our bu�on is styled within our Theme
resource for the normal state. The other bu�on states’ changes are
not. You can see the way it’s styled in Figure 6.16:

Figure 6.16: StyleBoxFlat after adjusting our se�ings

Now, let’s get back to the Theme Editor. Notice, we’re not on our
Theme Editor when we’re inside the StyleBoxes tab. In fact, we’re
manipulating the properties of StyleBox resources within the
Inspector dock. Now, instead of clicking the root control node of the
scene and finding the Theme resource a�ached to it, we can simply
click the small back arrow near the top-right of the Inspector dock,
as seen in Figure 6.17:

Figure 6.17: The back arrow at the top of the Inspector dock

Now, if we look back at our Theme Editor, you’ll notice that the
Bu�on UI type isn’t the only item that looks different. You can scroll
down or expand the Theme Editor by dragging the top edge into the
Viewport, as I’ve done in Figure 6.18:

Figure 6.18: The Theme Editor after the Bu�on UI type has been styled

Here, you’ll see that every other Bu�on type is styled to our Bu�on
type. This is because UI types such as CheckBu�on and CheckBox
all derive from Bu�on. This is where we can start to leverage the
Theme Editor. Rather than recreating what we did with the normal
state of our Bu�on type, we can reuse that base for other types of
bu�ons, such as checkboxes and check bu�on toggles. While we
won’t do it here, it’s good to keep it in mind as we style various
control nodes since they can impact each other indirectly.

With our Bu�on theme created, let’s add some Bu�on nodes to the
scene and test them out. To do so, click the + sign under the Scene
dock, as shown in Figure 6.19:

Figure 6.19: The + sign for adding nodes to a scene in the Scene dock

The bu�on will appear in the origin of our Viewport. It will look like
a tiny blur, as seen in Figure 6.20, since we have no text inside it,
though the blue and black blur means our theme has been applied:

Figure 6.20: A newly created bu�on with our theme

Now, select the Bu�on node from the Viewport, look for the Text
property in the Inspector dock, and type the word Play . Once the
text is added, the bu�on begins expanding. You can see how it has
the exact configurations that we created in the Theme Editor. Figure
6.21 shows the result:

Figure 6.21: Adding text to create our Play bu�on

Repeat this process to create two more bu�ons – Quit and Se�ings.
Be sure to move them out of the way of each other, using the
Viewport tools we covered in Chapter 4.

Sweet – we’ve now created a theme for a bu�on and easily created
the beginnings of a main menu. I’ve stacked all my bu�ons
vertically, as in Figure 6.22:

Figure 6.22: The main menu bu�ons themed by the Theme Editor

At this point, it’s worth noting the light blue lines that can be seen in
Figure 6.22. These are the screen edges of your game. If we create any
UIs outside of these blue lines, then we will not see them when we
run our game.

Let’s now move on to how to utilize the Theme resource we created.

Reusing our saved theme
Now that we’ve become a li�le bit more familiar with the Theme
Editor, we can go ahead and work on creating a Theme resource to
reuse throughout our game:

1. We can save the scene as ThemeTesting.tscn . We can then reuse the
ThemeTesting.tscn scene for previewing how UI components will
interact, as well as configuring them in our editor in an isolated
space that won’t interfere with other scenes.

2. Before closing the scene, be sure to select the topmost root node
that has our Theme resource in the Theme property.

3. Then, in the Inspector dock, you’ll see a list of properties. One
of them will be a Theme property, as shown in Figure 6.23.

4. Click the small drop-down arrow next to the Theme resource,
select Save As..., and name it UI_Theme.tres . This allows us to
load this theme into other scenes:

Figure 6.23: The Theme property on our control node

Save this in a location that makes sense. I’ve created a new folder
called user_interface where I’ve placed our testing scene as well as
the Theme resource. You can see the project structure breakdown for
what we have up to this point in Figure 6.24:

Figure 6.24: The organization of the project and adding a place for the UI

Now, the Theme property should look like Figure 6.25:

Figure 6.25: The Theme property after saving our Theme resource

Notice the additional properties within this Theme property, such as
Bu�on, CheckBox, and Panel. The CheckBox and Panel properties
are not covered in this chapter but are added here to show that once
configured in the Theme Editor, they are added as an item type to
create in the Inspector dock. From here, we can adjust the property
values of specific theme item types added to our Theme resource.
This can sometimes be more convenient than digging into the Theme
Editor and navigating to the property tabs we covered earlier.

We now have a saved Theme resource in our project. This means we
are able to customize the look of any control node we want in our
project and reuse it throughout.

With that, let’s close this scene and move on to creating our main
menu scene.

Adding a main menu
Understanding the Theme Editor and creating a Theme resource
makes us fully equipped to start creating our main menu scene. This
scene will be the first piece of the UI the player sees. Get started by
creating a new scene and selecting a User Interface node for the root
of the scene, as done in the previous section. Then, follow the next
steps:

1. With a new UI scene and a root control node, rename the node
to something more memorable, such as MainMenu. It’s always
important to name nodes what they are so that it’s easy to
debug and navigate a scene.

2. Next, find the Theme property in the Inspector, select the drop-
down arrow as shown in Figure 6.26, and then select Load:

Figure 6.26: Loading a Theme resource into a new scene

3. Navigate to where we saved the UI_Theme.tres resource and
select it. This will open the Theme Editor and allow us to
customize more control nodes.

4. Click the + sign in the Scene dock and search for the Panel node.
Once added, you’ll see a small opaque square appear at the
origin of the Viewport, as in Figure 6.27:

Figure 6.27: A panel added to our MainMenu scene

5. Expand the Panel node by using the eight dots on its edges so
that it looks like Figure 6.28:

Figure 6.28: The Panel node expanded with its position and size included

For the exact position and size, you can see the values of the Panel
node on the right-hand side of the screen, as in Figure 6.29:

Figure 6.29: The exact size and position of the Panel node

This Panel node is going to serve as the background for our main
menu text and set of bu�ons. Even though we didn’t customize the
Panel node, we can always navigate back to the Theme Editor and
customize it afterward to something that aligns be�er with the vision
of our game. Again, the Theme Editor is awesome for prototyping
and keeping a cohesive theme throughout your project.

Once our Panel node is properly sized and positioned, we’re going
to anchor it to the size of our Viewport. While we could design all
our UI to be set for one resolution, we’ll utilize anchors in Godot to

allow our UI to adjust with any given resolution. To do this, drag
each corner of the anchors until they look like Figure 6.30:

Figure 6.30: The panel with anchors on each of the corners

This means when we resize the game window, the panel will resize
appropriately because it’s anchored to the screen in some way. It’s
different from se�ing the Transform property, which sizes the Panel
node itself. Applying these anchors is more about controlling the
behavior of the UI, regardless of the platform we’re on.

Now that we have our Panel node properly placed in the scene and
anchored, we’re going to add a container.

Adding our buttons
With our Theme resource loaded, we can go ahead and add our
bu�ons. We’ll use another control node, VBoxContainer, to hold all
our bu�ons.

A container is a nice way to auto-size and space multiple UI objects.
Think of an inventory system where each item is in its own cell and
evenly spaced out. Or think about a row of bu�ons along the top of
your screen. For our purposes, we’re going to use a container to hold
all our bu�ons in the main menu. The one we’re about to use,
VBoxContainer, has a V in front of it to denote that it holds objects
vertically. There is also one for holding objects horizontally, denoted
by an H:

Note

Godot has many types of containers, and while we
won’t go over all of them, I recommend reading this
page to be�er understand the different types available:
https://docs.godotengine.org/en/stable/tutor
ials/ui/gui_containers.html.

1. Add a VBoxContainer node by selecting the + sign in the Scene
dock. Make sure it’s parented under the Panel node.

2. With our VBoxContainer node selected, set the Transform
property in the Inspector dock to what’s configured in Figure

https://docs.godotengine.org/en/stable/tutorials/ui/gui_containers.html

6.31:

Figure 6.31: The Transform property set for the VBoxContainer node

The VBoxContainer node should now be placed within our Panel
node. Next, we’re going to anchor the container within the Panel
node. Rather than dragging the anchor points, we can select the
container node and set an anchor preset.

3. Above the Viewport, click the Anchor Preset icon (which looks
like a green circle with two lines through it), panel, as seen in
Figure 6.32, will open:

Figure 6.32: Anchor preset options for control nodes

4. Select the bu�on at the bo�om that says Set to Current Ratio,
which will place green anchor points around the size of the
container.

With our container anchored, let’s start adding bu�ons to it by
taking the following steps:

1. Add a Bu�on node to the scene by clicking the + sign as usual.
Again, we want to make sure this new Bu�on node is parented
within our VBoxContainer node. You can reparent the node by
clicking and dragging it in the Scene dock so that it’s under the
VBoxContainer node.

2. Next, rename the Bu�on node to Play.
3. After renaming the node in the Scene dock, let’s also add text to

the Bu�on node. Navigate to the Text property in the Inspector

dock.
4. Type the word Play in the Text property of the Bu�on node, as

we did earlier in this chapter.

Our node tree in the Scene dock should look like Figure 6.33:

Figure 6.33: The node tree in the Scene dock as of now

Note

If no node is selected in the Scene dock when adding a
new node, the new node will be parented under the
root node.

Now, we want to duplicate the Play bu�on three more times – either
right-click the Play node and select Duplicate or select the node and
use the Ctrl + D shortcut. Rename the three new bu�ons as Se�ings,
Credits, and Quit. You should also rename the Text property to the
name of each node. Our node tree should look like Figure 6.34:

Figure 6.34: The node tree after duplicating our Play bu�on

And our Viewport should look like Figure 6.35:

Figure 6.35: Our main menu after adding all our bu�ons

Notice that since our root node, MainMenu, has the Theme resource
a�ached to it, every child node, such as the bu�ons, is themed the
way we designed it in the Theme Editor. However, the Panel node is
not, because we did not design it in the Theme Editor. You could go
back and design it if you plan to use many panels throughout your

game. Otherwise, designing it once does not necessitate adding it to
the Theme resource.

Now, save this scene as MainMenu.tscn . Having created our main
menu, we are presented with a couple of options of where to place it.
We could keep it isolated and load other scenes as needed,
depending on the bu�on the player clicks. Another option that has
become very popular is to embed the main menu on top of the world
in some way. The la�er route is a more interesting one both
aesthetically and coding-wise, so we’re going to implement it next.

Embedding our main menu
To start embedding our main menu, let’s do the following:

1. Open our World.tscn scene.
2. Click the + sign from the Scene dock and add a Camera node.

This camera is only going to be active while we’re on the main
menu.

3. Rename this node to MenuCamera. This camera should not be
nested under any other node but rather a direct child of our root
node, World.

4. In our level, we will position the Camera node somewhere high
in the sky, providing a bird’s eye view of the world and
showcasing our level.

Showcasing our level provides a great opportunity to invite our
players into the world, especially when the main menu will be the
first screen they see. Then, for the UI, we’ll have the main menu sit
on top of the view of our level. This will provide an active and alive

world rather than a static background for our main menu. If you are
struggling to picture what this will look like, you can jump ahead to
Figure 6.39 to see it in action.

First, we need to position the Camera node. Here’s how we can do
that:

1. Select the Camera node in the Scene dock and then in the
Inspector dock, set the Position and Rotation properties to be
that of Figure 6.36.

2. Be sure to select the Camera Preview bu�on in the top-left
corner of the Viewport to determine whether you like its
location:

Figure 6.36: The Transform property of MenuCamera

Once our MenuCamera node is positioned, we want to set it to be
the Current camera. To do this, we’ll take the following steps:

1. Select the MenuCamera node.
2. Navigate to the properties in the Inspector dock for the

MenuCamera node.
3. Select the checkbox next to Current.

We are now done se�ing up the MenuCamera node and will move
on to adding our MainMenu scene to our World scene.

Drag the MainMenu.tscn scene file from the FileSystem dock into the
Scene dock. An alternative to dragging the scene from one dock to
another is clicking the Instantiating Child Scene icon, which
appears as a chain link icon, as shown in Figure 6.37:

Figure 6.37: The chain icon for instantiating scenes

Once the Instantiating Child Scene bu�on is clicked, it will provide
a pop-up menu with all the scenes created in your project. Click the
user_interface/MainMenu.tscn one, and it will be added as a child node.
We did something like this with our Player scene in Chapter 5
when we added our Player scene to our World one; here we’re doing
the same thing except with our UI.

The last thing to do in our node tree is to drag the MainMenu node
under the new MenuCamera node, as in Figure 6.38. We do this to

manage the scene a li�le bit be�er, keeping related nodes with each
other:

Figure 6.38: The World node tree after adding our main menu

It’s also fine if the MainMenu scene is only a child of the World
node. Alternatively, we could instantiate and add the scene from a
script, which we’ll do later regarding our Se�ings page.

Note

Notice the highlighted icons next to Player and
MainMenu in Figure 6.38. This quickly shows that

these are instantiated scenes nested in our World
scene. We can also refer to them as nested scenes.

Now, save the scene and run the game. You should see a screen like
Figure 6.39:

Figure 6.39: The main menu embedded in the World scene

At this point, our menu has no functionality whatsoever. We can
click and hover over the bu�ons all we like, but they don’t do
anything yet. So, let’s go back into the editor to make our menu
bu�ons do what they say they are supposed to.

Connecting menu buttons
Before we get started hooking the menu bu�ons up, we need a script
a�ached to the root node of our scene. To a�ach a script, do the
following:

1. Right-click the root node, MainMenu, in the Scene dock.

2. Next, click the A�ach Script bu�on. A new pop-up window will
appear.

3. In this new window, be sure to name the script MainMenu.cs .
4. Click the Create bu�on from the pop-up window.

Of the four bu�ons we’ve created, the simplest one to set up is Quit.
So, switch to our MainMenu.tscn scene and select the Quit node. Then,
with this node highlighted, click the Node tab that’s along the top of
the Inspector dock, as shown in Figure 6.40:

Figure 6.40: The Node tab for the Quit node

This Node dock is how we can access the signals of a specific node.
We did it once before when creating our items in Chapter 5. For our
bu�on, there is a list of signals that we can connect to, depending on
the state of our bu�on. Double-click the first signal, button_down(),
and a new window will appear, as in Figure 6.41. We’re selecting
button_down() because we want to quit the game once this bu�on is
clicked:

Figure 6.41: Connecting a signal to our Quit bu�on

It’s important to note that we’re able to connect to this signal because
we already have a script created to do so. If there was no script in
this scene, we would need to create one to add the signal. The reason
for this is because of the Receiver Method portion of this window.

This is the name of the function that will run once the signal is
emi�ed. By default, the receiver method is going to be added to our
MainMenu.cs file.

Now, Godot automatically generates a name for the function, which
is why it says _on_quit_button_down in Figure 6.41. Instead, rename it to
ExitGame() .

Then, click the Connect bu�on. You will be taken to the script in
Visual Studio Code (or whatever IDE you have configured for
Godot), and you can see the newly created function.

Note

If we already created a function in any script and are
connecting it to a signal, we could select the Pick
bu�on that’s next to the receiver method function
name and search for the function. This is useful when
we have multiple scripts in a scene with multiple
functions and need to find a specific one.

In this new function, we’ll add one line of code:

GetTree().Quit();

The GetTree() function will get the active scene tree – this is
World.tscn since MainMenu.tscn is nested inside World. Meanwhile,
Quit() is a built-in Godot function that quits the application. Save the
scene, and you’ll notice that you can’t test it out. We have no cursor

because of how we set up our player controller. Don’t worry – we’ll
fix this in the next section.

For now, repeat that process for both the Play and Se�ings bu�ons.
We’ll create two receiver methods, one for each bu�on respectively,
and name them the following:

For the Play bu�on, name it OnPlayClicked()
For the Se�ings bu�on, name it OnSettingsClicked()

Now that part of our main menu is functional, we’re going to look at
adding an animation to provide a transition to the menu and then
connect that to our Play bu�on.

Adding a transition animation to the
menu
Before we dive into the code, let’s walk through what we’re about to
do. When we click the Play bu�on, we want the menu to slide out
from the screen and then switch our view and control to our Player
node. A few things we’ll need to account for, though, will include the
following:

Making sure we lock the Player node when we’re on the main
menu and then unlock it when we leave it
Toggling which camera is the Current camera
Updating the way the mouse appears in the game because
currently, it’s not visible

To get started, open the World.cs script file to add the transition we
need.

Note

With the Godot editor configured to Visual Studio
Code, you can simply click the scroll icon next to the
World node to open a script.

We’ll first need to provide a reference to the new camera node we
created (MenuCamera). Inside the script, add the following variable
to our World class:

private Camera3D menuCamera;

The menuCamera variable will control the view of the game world that
the player will see when starting the game. Something to be aware of
is that we can only have one camera set to the Current camera of any
given scene. We’ll use this knowledge to toggle between the menu
camera and the one that is si�ing on our player.

With our newly created variable, assign it to a node in the _Ready()
function. Anywhere after the class declaration but before any
function definitions is a valid space. It will look like this:

menuCamera = GetNode<Camera3D>("MenuCamera");

Next, still in the _Ready() function, add an if statement to check if
our menuCamera variable is the current one by writing this:

if(menuCamera.Current) { }

Within this if statement, write two lines of code. The first is the
following:

Input.MouseMode = Input.MouseModeEnum.Visible;

This changes the way the mouse operates in the game. In Chapter
4, for our player controller, we used the Input class to hide the cursor
and make the cursor be the center of the screen. We’re just reversing
that here by making it visible so that we can interact with the UI.

The second line we’ll write is the following:

player.ProcessMode = ProcessModeEnum.Disabled;

The ProcessMode property exists on every node object and determines
how nodes are processed in a scene tree. There is a short list of
options that we can access to alter how a node is processed. You can
find them here:
https://docs.godotengine.org/en/stable/tutorials/script
ing/pausing_games.html#process-modes.

By default, all nodes have their ProcessMode property set to Inherit .
However, you can see in the second line of code we added that we’re
se�ing the player’s ProcessMode property to be Disabled . This means
that the Player node and all its children (the entire nested scene) will
not process or run. We want the Player node to behave like this only
while we’re on the main menu; otherwise, you could run around the
world as the player while still si�ing on the start screen.

https://docs.godotengine.org/en/stable/tutorials/scripting/pausing_games.html#process-modes

At this point, save this script and test the game. You should be able
to move your mouse around the main menu and click Quit to exit
the game. Nice!

Now, back in the editor, open our MainMenu.tscn scene. Then, click the
+ sign and add an AnimationPlayer node. We saw this node briefly
when we were animating our Player node; however, we focused
more on the AnimationTree node than we did the AnimationPlayer
node. Here, we’re going to use the AnimationPlayer node and add
keyframes to animate our menu off the screen.

Once the AnimationPlayer node is added, an Animation panel
should replace the Output panel, as in Figure 6.42:

Figure 6.42: The AnimationPlayer node in Godot

In the top-left corner of Figure 6.42, you’ll see bu�ons for playing
animations, stepping through keyframes, and stopping animations.
We can use these controls to test how our animation looks in the
Viewport, which we’ll do in a moment. For now, next to these
playback controls, click the Animation bu�on. This will open a
dropdown to create a new animation, which you can see in Figure
6.43:

Figure 6.43: Creating a new animation in the AnimationPlayer node

Select New and a pop-up window will appear, asking us to name
the new animation. Name it MenuTransition and select OK:

Figure 6.44: Naming a new animation for the AnimationPlayer node

After naming the animation, you’ll see that a timeline has been
added right below the playback and animation select controls, as

shown in Figure 6.45:

Figure 6.45: The timeline for the AnimationPlayer node

There are a couple of things to point out on this timeline. They are
the following:

We can add tracks to the AnimationPlayer node by clicking the
+ Add Track bu�on.
On the other end of the timeline after the set of seconds
markers, there’s a stopwatch icon with a 1. This is the default
length of the MenuTransition animation. You can also tell the
length of an animation by seeing the light gray coloring that
covers the timeline from 0 to 1.
Right at the end of the timeline is a looping symbol. If you click
it, it will cycle between three different types of looping:
Default: By default, looping is turned off. The first click turns
looping on.
Reverse Looping: The second makes the animation loop from
beginning to end and then runs the animation backward, from
end to beginning.
Forward Looping: The last option is forward looping, which
starts from the beginning of the animation on every loop.

One last thing to notice about the AnimationPlayer node is that with
the Animation panel open, you can look at any property in the
Inspector dock and notice a small key icon next to it now, as
highlighted in Figure 6.46:

Figure 6.46: The Panel node’s properties with the Animation panel open

The keyframe icons next to each of the properties do not alter the
properties on the nodes. Instead, it takes the current state of that
property and adds it to our AnimationPlayer node. Go ahead and
change the length of the animation from 1 to 0.5. The animation
we’re creating is going to be a quick one. Next, we’re going to click
the key icon that’s next to Position, which is the property whose
name is selected in gray in Figure 6.46.

After clicking the key icon, a new pop-up window will appear,
asking you to create the new keyed frame and add the Position
property to the animation track. By adding the Position property as
a keyframe to the AnimationPlayer node, we are not se�ing the
Position property of any specific node. Rather, we are taking the
current Position property and adding it as an animation track. The
pop-up window we see after clicking the keyframe icon is asking us
to confirm that we do want to add the Position property as an
animation track.

Now, click the Create bu�on, and two things should appear on the
Animation panel, as shown in Figure 6.47. The first is the node that’s
added to the track (in our case, Panel) and the second is the
properties of that node that have been added as keyframes (in our
case, Position). By default, the visible property is added, but we can
always uncheck it to disable it on the animation track:

Figure 6.47: The Panel node on the animation track

In Figure 6.47, we can see some checkmarks. The two checkmarks on
the left mean the properties are active on the animation track. The
third checkmark at the start of the animation timeline determines
whether this node is seen or not. We want it to be left like this.

The last thing to be aware of is a blue line that runs from the top of
the Animation panel and through the properties we’ve added to the
animation. This determines what point of the timeline we’re looking
at. You can click and drag this to move along the length of the
animation, or you can use the box next to the playback controls. Set
the number in the box next to the playback controls to 0.5 (visible in
Figure 6.48) so that now, the blue line should be at the end of the
animation.

Now, in the Viewport or via the Transform property, we’re going to
move our Panel node off screen. Moving something off screen means
moving it outside of the blue lines as shown in Figure 6.22. Once
we’ve moved it, we want to key the current location into the end of
our animation. I’m moving mine down, so the animation will have

the Panel node slide down and out of view, but you can move yours
in any direction you’d like.

The Transform values for the Panel node are 64 for X and 692 for Y.
After se�ing these values, select the AnimationPlayer node by
clicking the Animation bu�on at the bo�om of the Output panel
(you can see it highlighted in Figure 6.48).

At this point, the Inspector dock should still show the properties of
the Panel node, and with our AnimationPlayer node, open, the key
icons should now be visible next to those properties, just like in
Figure 6.46. Click the key icon next to the Position property again,
and a diamond should show up on the animation timeline at the 0.5
marker for the new position.

Our Animation panel should look like Figure 6.48:

Figure 6.48: The MenuTransition animation complete

After se�ing the keyframe, move the blue bar back to the beginning
of the timeline and select the Play bu�on. You should see the Panel
node and all its children move in the Viewport.

Awesome – we have an animation for our menu. Now, we need to
go back into our MainMenu.cs file and trigger the animation once we
click the Play bu�on from the menu.

Note

If you don’t remove the scene like we do later in this
chapter, you will want to disable the bu�ons,
especially if they are tied to any keyboard input, as
they may still trigger.

Adding an AnimationPlayer class to our script is very easy. We’ll
declare a private variable at the top of our class like this:

private AnimationPlayer animPlayer;

Then, in our _Ready() function, assign the private variable to the node
in our scene like this:

animPlayer = GetNode<AnimationPlayer>("AnimationPlayer");

The last line of code to add is in our OnPlayClicked() function. It will
call the Play function from the AnimationPlayer class, and once we
provide the name of the animation, that’s the one it will run:

animPlayer.Play("MenuTransition");

Now, save the script and run the game. When we click the Play
bu�on, we should see the menu transition off screen. Of course, now
we just sit in a bird’s eye view of our game world, because we
haven’t toggled back to our Player camera and allowed for the
Player node to be processed. To do so, we need to add code to both
our MainMenu.cs file and our World.cs file.

In our MainMenu script, we’re going to add two lines of code. The first
will be inside our OnPlayClicked() function after the animation plays:

World root = GetOwner<World>();

Here, we’re creating a World variable and calling it root . We’re using a
built-in Godot function called GetOwner() that will get the owner of
this node. Remember – our MainMenu scene is nested in the World
scene, so its parent, or owner, is World.

The next line will be the following:

root.PlayerStart();

What we’re doing here is we’re taking our World variable, root , and
calling a function from the World.cs file. We haven’t created this
function yet, but we’re about to, so let’s save this script and switch to
World.cs . It may throw an error because it can’t find PlayerStart , but
don’t worry – we’re going to go create it now.

Underneath our _Process() function, we’ll create a new function
called PlayerStart like so:

public void PlayerStart() { }

Now, inside the body of this function, we’re going to reverse the
logic we had in _Ready() . First, we want to make sure our Player node
is processing which means it can receive both input and physics. To
do that, we’ll write the following:

player.ProcessMode = ProcessModeEnum.Always;

Again, we’re referencing a pre-existing list of options on how the
Player node should be processed.

The next line will be changing the mouse input:

Input.MouseMode = Input.MouseModeEnum.Captured;

With MouseMode set to Captured , you shouldn’t see the cursor at all after
clicking the Play bu�on.

Save this script and test the game out! You should be able to click the
Play bu�on, watch a short animation of the menu, then switch to
your Player view and play the game as we’ve created so far.

At this point, two out of four of our menu bu�ons – Play and Quit –
are functional. We’re now going to turn our a�ention to creating a
Se�ings page and connecting our menu bu�on to it.

Designing a Settings screen
With a functional main menu screen and two working bu�ons, we’re
now going to set up the Se�ings screen and connect its bu�on to this
new UI.

Create a new scene by clicking the + sign above the Viewport, and in
the Scene dock, select User Interface. We are once again presented
with a 2D view of a blank scene. Double-click the node and rename
it to Se�ings. What we will create here are two volume sliders – one
for music and one for sound effects – and a Close bu�on to return us

to the main menu. Of course, we can add many other things here
such as UI or video se�ings, but this chapter will not cover those
topics.

Another thing we need to do is ensure our Theme resource is
applied to all children nodes in this scene. This means when we start
to add objects such as bu�ons, they’ll already be designed in the way
we want or need. So, add the UI_Theme.tres resource into the Theme
property of our newly created UI node. We’re going to be expanding
on the Theme resource in this section as we add our volume sliders.
We’ll circle back to the Theme Editor and volume sliders after
making our se�ings look a bit nicer.

Next, we will frame the Se�ings page with its own background as
we want it to open on top of the main menu. We can do this by
adding a ColorRect node. Click the + sign, and once the ColorRect
node has been selected, it will appear in our Viewport, white by
default. If we select the ColorRect node and then look in the
Inspector, we can see its first property is Color. Go ahead and
choose a color that will contrast well with black – I chose a light blue
(the hex color for it is #ABD4F6).

With a color selected, we also need to resize the ColorRect node to
fill the screen. The only property I’ve changed is Size, which you can
find under the Transform property when the ColorRect node is
selected (see Figure 6.49):

Figure 6.49: The Layout and Transform properties of our Se�ings node

The only other thing to do is to set our anchors for this node. Go
ahead and click the anchor bu�on at the top (if you forget where this

is, refer to Figure 6.32), then click the Set to Current Ratio bu�on.

Now, click the + sign yet again and add a Label node. This node will
be for labeling the page we’re on, so rename it to Title. Then, with
the new node selected, update the Text property by entering the
word Settings . Then, find the Font Size property and bump it up to
something such as 75 pixels, as seen in Figure 6.50. You can also add
custom fonts in the property just above this one if you would like. I
am leaving mine to Godot’s default font:

Figure 6.50: The Font Sizes se�ings on our Label node

Next, let’s update the Transform property by adjusting the Size and
Position values of this label. For the Transform property, set the
following options:

Size: x: 384 px , y: 103 px
Position: x: 362 px , y: 55 px

Note

The px unit listed stands for pixels.

Now, we can move on to adding, then designing, our volume
sliders.

Adding our volume sliders

As you may have noticed, Godot’s built-in suite of UI nodes offers a
lot of usability and flexibility. We’re going to add some sliders to add
to our Settings.tscn scene.

When we click the + sign on the Scene dock this time, search for the
HSlider node (the H in the name stands for horizontal) and rename
it to MusicSlider. This node needs to be parented below the Se�ings
panel we created earlier. Now, position the slider in our scene. We
want HSlider to be centered and under our title for the screen. The
position and size are as follows:

Size: x: 482 px , y: 113 px
Position: x: 454 px , y: 257 px

Next to the slider, we want to add a Label node so that the player
knows what the slider changes. Rather than adding a new Label
node, we can select the existing Label node that we named Se�ings
in our scene and duplicate it. You can duplicate it using the same
methods mentioned while working with the Play node earlier.

Once duplicated, rename the node to MusicLabel and move it to the
following position: x: 104 px , y: 254 px . Then, select the anchor bu�on
and set the MusicLabel node’s anchors by clicking Set to Current
Ratio from the anchor options above the Viewport (as shown back in
Figure 6.32).

Now, we’re going to duplicate multiple nodes at once to create our
sound effect slider alongside its title. Click the MusicLabel node,
hold the left Shift key down, and click the MusicSlider node. We
should have two nodes selected now, as shown in Figure 6.51:

Figure 6.51: Selecting multiple nodes in a scene

Note

The selection keyboard shortcut may differ depending
on your operating system; however, this is the
command on Windows 10.

With these two nodes highlighted, you can use the Ctrl + D
duplication shortcut to duplicate both nodes at once. When we do
this, the duplicated nodes will be copied in the scene tree based on
where their parents were. Therefore, our duplicated Slider and
Label nodes will be parented under the ColorRect node.

After duplicating the MusicSlider and MusicLabel nodes, we
should see MusicSlider2 and MusicLabel2 in the scene tree.
Rename these to SFXSlider and SFXLabel, respectively.

Then, reposition SFXSlider to x: 454 px and y: 400 px and reposition
SFXLabel to x: 104 px and y: 400 px . Our Se�ings screen should now
look like Figure 6.52:

Figure 6.52: The Se�ings screen after adding our labels and sliders

The Label nodes we added contrast nicely with the background we
chose, but the default colors of the sliders do not. We can quickly fix
this by going back into our Theme resource.

Designing our volume sliders
We’ll add a theme type for the HSlider node and configure it
accordingly. To get back to our Theme resource, select the Se�ings
control node – also the root node of the scene – and the Theme
Editor panel should pop up in the bo�om panel automatically (since
we already have our Theme resource on the Theme property of this
node).

With our Theme Editor open again, click the + sign next to the
currently selected theme type. You can see this option in Figure 6.53
where the Bu�on theme type is my currently selected type:

Figure 6.53: Creating a new theme-type resource

A new menu will appear. Search for the HSlider node, click Add
Type, and the HSlider node should now be the selected type, as
seen in Figure 6.54. This is an excellent way of highlighting how you
can change and adjust different UIs as needed on the fly via the
Theme Editor:

Figure 6.54: The HSlider theme type selected

Next, we’re going to add and customize grabber_area ,
grabber_area_highlight , and the slider components of our HSlider
theme type. First, we’ll create StyleBox resources for the grabber_area
and grabber_area_highlight components. Then, we’ll look at the slider
component, which will be a StyleBoxLine resource.

For our grabber_area component, click the rainbow-colored property
tab, as shown in Figure 6.55, and create a new StyleBoxFlat resource
for both the grabber_area and grabber_area_highlight components by
selecting the + sign next to the StyleBox resource:

Figure 6.55: Adding a StyleBox resource to the HSlider theme type

With the two StyleBoxFlat resources created for the grabber_area and
grabber_area_highlight components, let’s create a StyleBoxLine
resource that we need for the slider. Click the arrow next to the
default StyleBoxFlat option for the slider and select the

StyleBoxLine option. Then, click the + sign next to the StyleBoxLine
option. You can see the three StyleBox resources created in Figure
6.56:

Figure 6.56: The StyleBox resources for our HSlider theme type

Note

Figure 6.56 looks wider than the default version in
Godot because you can resize and adjust the layout of
the Theme Editor by dragging one of the edges.
Otherwise, it can be difficult to read what you’re
configuring.

With our StyleBoxFlat resources created, we will set a color on each
one and configure them in a way that fits our current background
and setup.

For the StyleBoxFlat resource for which we created a grabber_area
component, we’re going to change the first listed property, BG
Color, to the following hexadecimal color: #003E65 . You can see
where to type the hexadecimal number for the color in Figure 6.57.
You can also select a color by dragging the pointer in the color circle
or se�ing the red, green, or blue (RGB) se�ings. The A below the
RGB se�ings is for Alpha, which determines how transparent the
item is. Leave this set to 255 :

Figure 6.57: The color options for the BG Color property

After that, we’re going to round the corners of the slider to
something softer by expanding the Corner Radius property and

se�ing Top Left, Top Right, Bo�om Right, and Bo�om Left to 10
pixels.

Moving on, for the StyleBoxFlat resource created for the
grabber_area_highlight component, we’ll change the BG Color
property to the following hexadecimal color: #CB8B59 . We’ll also
change the Corner Radius property to 10 pixels for each of the
corners.

At this point, you should start to see the sliders change in the
Settings.tscn scene.

The last StyleBox resource to adjust is the StyleBoxLine resource on
our slider component. This StyleBox resource is significantly
different from our flat StyleBox resources. The StyleBox line has a
much smaller selection of properties to adjust. We’ll change the
Color property to match that of the grabber_area component. Then,
change the Grow Begin and Grow End sizing to -10 pixels. Once
you set this property, you should see rounded corners. Then, change
the Thickness property to 12 pixels. This will match in sizing with
the custom slider image we’re about to add.

For the custom slider image, we’ll be downloading an excellent UI
pack from Kenney Assets, which you can find here:
https://kenney.nl/assets/ui-pack (the default one is rather
small and opaque). Click the Download bu�on, extract the zipped
folder, and then select one of the circular images to drag and drop
into the FileSystem dock. I chose the red_circle.png file. Be sure to
place the image in the correct folder within your project – the
user_interface one.

https://kenney.nl/assets/ui-pack

With the image in our project, we can return to the Theme Editor.
Click the image icon shown in Figure 6.58. You should see the default
image that’s our current slider there. Click the + sign next to the row
for the grabber state and browse to your circular image that we just
imported from the Kenney UI asset pack. Repeat this process for the
other states that the grabber will be in, such as grabber_disabled and
grabber_highlight , until it looks like Figure 6.58:

Figure 6.58: The images for the grabber on the slider

Save the scene. Now, to complete our Se�ings scene, the last
component to add to this scene is the navigation for how to get from
the main menu to the Se�ings screen and back.

Navigation on the Settings screen
To start adding navigation to the Se�ings screen, let’s connect a
signal to the Se�ings bu�on, much like we did with the Play and
Quit bu�ons.

To do this, click the Node tab at the top of the Inspector, open the
MainMenu.cs file, and double-click the button_down() signal to add a
function to it. A pop-up window will appear, asking for the function
name. In the Receiver Method box, put the name OnSettingsClicked .
Then, click the Connect bu�on, which will open the MainMenu.cs file
as it’s the only script in the scene; otherwise, you’d have to select the
script you’d want the function to be tied to.

Note

When adding a function name to the Receiver Method
box, you do not include the parentheses that come
after the function name.

When the script opens, it may or may not have automatically added
the function name we just created. If not, we’ll do it underneath the
ExitGame function, like so:

public void OnClickedSettings() { }

Within that function, we’ll create a Node variable called settingsScene –
this is because we’re going to add the Settings.tscn scene to our
MainMenu.tscn scene via a script rather than dragging it into the scene
node as we did with MainMenu.tscn in the World.tscn scene.

We’ll write the following line within our OnClickedSettings() function
now:

Node settingsScene =

I’ve left the equals operator as we will assign this new variable to
Godot’s ResourceLoader class. This class has a Load() function that
allows us to load packed scenes from code and instantiates various
scenes as we need them. Some common examples of this are when
enemies are spawned in or a player fires a bullet. You can read more
about the ResourceLoader class here:
https://docs.godotengine.org/en/stable/classes/class_re
sourceloader.html.

For now, we’ll assign our settingsScene variable with the following:

First, we access the ResourceLoader class and then use the dot operator
to call the Load function within it. We then pass in the path to our
scene and instantiate it. This will cache the scene, or resource, and
allow us to access it at later points throughout the game. Be aware
that if the path changes, you will need to update this line of code
with the correct one.

Even though we have instantiated the node, we don’t have it added
to the scene. We need to call one more function to make this happen:

AddChild(settingsScene);

ResourceLoader.Load<PackedScene>("res://user_interface/Settings.tscn"

https://docs.godotengine.org/en/stable/classes/class_resourceloader.html

Here, we call the AddChild() function, which takes the packed scene
that we’ve instantiated and adds it as a child to the node that the
script is on. In this case, the script is on the root node, so it will be
added as a child to the MainMenu scene, which is what we want.

Save the script and test the scene out. You should be able to launch
the game, click the Se�ings bu�on, and then access your Se�ings
screen. You may notice we still have a couple of issues, though. For
one, we have no way to navigate back to the main menu screen. Let’s
look at adding a Close bu�on to return to the main menu.

Adding a Close button
Adding a Close bu�on is super easy thanks to our Theme Editor. In
our Settings.tscn scene, click the + sign at the top of the Scene dock
and add a new Bu�on node. Make sure it’s parented under the
ColorRect node by dragging it underneath it.

Since we already themed our Bu�on type, this new bu�on will look
like our main menu bu�ons by default. The reason is that we have
the Theme resource (UI_Theme.tres) that we created and placed on
our root node (Se�ings), which means any children that have a
theme type will apply it. This is convenient because we must only
add our Theme resource to the scene once.

Now, rename this new Bu�on node to CloseBu�on. With the
CloseBu�on node selected, let’s look at the properties in the
Inspector dock and update them. Scroll down to the Layout
property and expand it to find the Transform property. Then,
position it using the following values:

Size: x: 70 px , y: 77 px
Position: x: 996 px , y: 55 px

Moving on, in the Text property, we can put an uppercase X inside it
(this being the symbol of a Close bu�on). However, rather than
using text, we could also use an icon from the Kenney UI pack. We
can add the icon to our project and then upload it to the Icon
property. Then, we would enable the Flat property, which is a quick
way to disable the decorative customization we did with the Bu�on
theme type. Then, we would align it to be centered by selecting
Center in the Icon Alignment dropdown. Finally, we’d enable the
Expand Icon property to fill the size of the Bu�on node we created,
since the default size of the asset we downloaded is a li�le too small.
You can see the se�ings for using an icon in Figure 6.59:

Figure 6.59: The Bu�on properties to be set for using a .png file

Since the icon is being expanded, it may look a bit pixelated, but you
can design or find images that will fit the specific size and resolution

that you need for your project when using images for the UI. For this
reason, I have chosen to utilize the X icon as text to showcase the
customization we created for the Bu�on node in the Theme Editor.

Note

If you add the icon rather than use the text, notice that
only some of the Bu�on-type properties from our
Theme resource will be applied. For example, the way
the bu�on grows on highlighting will stay, but the
color feedback will not.

With our Close bu�on designed and placed, let’s look at hooking it
up to be a functional bu�on. Keeping the CloseBu�on node
highlighted, click the Node tab in the Inspector dock to get the list of
available Godot signals. Once again, select button_down() . Once we’ve
clicked Connect, a new popup appears where we must name the
function we want to be tied to this signal in the Receiver Method
box. Write OnSettingsClose and click the Connect bu�on at the bo�om
of this popup.

Now, save the scene and open our Settings.cs file. In the class under
our _Ready() and _Process() functions, let’s declare a new function:

public void OnSettingsClose() { }

Then, within this function, we’ll write a single line, like so:

this.QueueFree();

The QueueFree() is a method from the Node object in Godot that
deletes whatever node called the method at the end of the frame.
This line of code is saying to take this object, which is the root node,
Se�ings, and destroy it.

The reason we can remove it this way from our scene is because, if
you recall, we added the entire Settings.tscn scene as a child of our
MainMenu.tscn scene. So, when we delete the se�ings scene, it will take
us back to the main menu scene, which is what we want. We’re
basically instantiating and deleting the se�ings scene as needed
rather than having it constantly exist somewhere in the project. This
keeps our scenes clean and independent of each other.

Save the scene and test out the Se�ings screen. It should look
something like Figure 6.60 unless you used the Kenney UI icon
instead of the Theme resource for the CloseBu�on node:

Figure 6.60: Our Se�ings screen after se�ing up the nodes and theming

You should also be able to move the slides, but right now, they don’t
do anything. Don’t worry – we’ll get to that in the next chapter.

Summary

This chapter was all about the user experience and creating a well-
designed UI to make the experience a good one.

We successfully added a UI for our game to allow our player to start
and exit the game. The first component we built was the main menu,
which allowed us to navigate to various other UI screens, such as the
se�ings and the credits. Within the Se�ings menu, we included a
volume slider. Through all this, we discussed control nodes and how
they function in Godot.

With the addition of a UI, we can now turn our a�ention to more
specific areas within Godot, such as audio, pathfinding, lighting, and
more.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

http://packtpub.com/unlock

7

Adding Sound Effects and Music

So far, we have a player, a world, and the beginning of a UI for our
users to interact with. Now, we’re going to make our game come
alive with audio.

Both music and sound effects play a crucial role in games. Music can
set the tone of an environment, let you know when you’re in danger,
or shift the narrative in a specific direction. Sound effects can have a
similar result – adding footsteps when your player moves, providing
bu�on feedback when you hover or click on a piece of UI, or adding
sounds when your player moves through the world (e.g., climbing
through a window, scaring birds, or hearing a gunshot). The
immersion that audio adds is a big one, and it’s not an area to be
overlooked.

In this chapter, we’ll be covering audio, specifically adding music
and sound effects to our game. We’ll be exploring the specific nodes
Godot has for audio, as well as understanding the audio bus system
in Godot. After that, we’ll dive right into adding sound effects to our
main menu. Then, we’ll add music to our world, and through code,
we’ll trigger each track to play depending on the input of our player.
Finally, we’ll take our audio knowledge and apply it to creating

volume sliders in the se�ings menu we created in the previous
chapter.

So, in this chapter, we will cover the following topics:

Understanding Godot’s audio nodes
Working with audio buses
Adding sound effects to the UI
Adding music to our scenes
Making our se�ings page functional

Technical requirements
For this chapter, the technical requirements will be the same as in
Chapter 1.

All the code from this chapter will be available in the GitHub
repository here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Understanding Godot’s audio nodes
Godot’s audio engine is a very easy one to pick up. More specifically,
Godot 4 brought a lot of much-needed upgrades to the audio engine,
such as polyphony support, an audio stream importer window, and
a text-to-speech function. We’ll get into more of these new features in
later sections and chapters, but for now, let’s discuss the audio nodes
that Godot provides. You can see the audio nodes available in Figure
7.1:

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-

Figure 7.1: The available audio nodes in Godot

As you can see, we have positional audio nodes that are for either 2D
or 3D audio:

AudioStreamPlayer2D: This allows for audio to be a�enuated
with distance to the player. An example of this could be UI-
based and depending on whether it’s on the left or right side of
the screen, it will determine whether the audio comes out of the
left or the right speaker more. By default, it’s heard from the
screen center.
AudioStreamPlayer3D: Much like the 2D version, this node also
allows for audio to be a�enuated with distance to the player
except it’s in a 3D space rather than a 2D one. For example, if
you had a fountain in your town square, the sound of running
water could be heard. The distance from the fountain would
change when using one of the positional nodes.

Plus, there is a default AudioStreamPlayer when the location of
sound does not ma�er, which is what we’ll be using throughout the

chapter.

Here, it is also worth noting the AudioListener nodes, which focus
on where audio is heard in the game. These could be used when the
player is having a dream sequence or a telepathic conversation, or
maybe when another character is whispering in one ear – in that
case, you could shift where the sound is coming from. You can do
this using the 2D and 3D AudioListeners:

AudioListener2D: When there is no AudioListener2D node, the
default listener is set to the center of the screen. Beyond the four
corners of the screen or the sides of the screen, there is nowhere
else for the AudioListener2D to be positioned.
AudioListener3D: When there is no AudioListener3D node, the
default is from the Camera3D node. A 3D listener can be placed
anywhere in the level, allowing objects to listen and trigger
based on sound.

Note

In Godot, much like Camera, there can only ever be
one active AudioListener.

That’s it as far as audio nodes go. Of course, within each of these
nodes, there are a lot of properties and options that we will be
navigating throughout the chapter as we add sound effects and
music to different components of our game. We will only be using
the AudioStreamPlayer nodes, but it’s good to have an overview of
how the other audio nodes in Godot behave.

Next, we’ll be looking at the audio bus in Godot and how to set it up
to be�er control the volume of both sound effects and music.

Working with audio buses
An audio bus is a type of audio track that provides a single entry
point for multiple audio tracks. You can find the audio bus in Godot
by clicking Audio on the bo�om of the Output panel (this is in the
exact same space that we found the theme editor in the previous
chapter).

Once selected, a new panel will appear that looks like Figure 7.2. This
will have the default audio bus layout for Godot.

Figure 7.2: The audio bus layout panel in Godot

We can use the bus to adjust the volume and apply various effects to
audio tracks as they come through the bus. For example, we will
have a bus for sound effects, which means channeling their audio to
that bus if they are tagged as a sound effect. What this means is
every time a bu�on is clicked, or a collectible item is picked up, the
audio track of each of those actions will be set to play through the
sound effect bus.

The Master audio bus
Even though we’ll have multiple audio tracks, all of them will funnel
into our sound effect audio bus. The sound effect bus will then
funnel into the Master bus. Any audio bus we create will still be
channeled through the Master audio bus. You can see this in Figure
7.2 with a close-up of it in Figure 7.3:

Figure 7.3: The Master bus in the default layout bus in Godot

Each bus is broken up in the following ways:

Bus name: Here, the audio bus’s name is Master.

Solo, mute, and bypass: The le�ers S, M, and B underneath the
bus name are audio effects that can be set for the bus. Solo
means only the bus in solo mode will play, mute will silence the
bus, and bypass will set the bus to bypass any audio effects.
Volume unit (VU) meter: This tracks the volume of the specific
audio bus. At its default, it’s set to 0 , but it can be adjusted to set
a default volume for all audio that’s channeled through it.
Listed audio effects: This small container in the audio bus has a
dropdown called Add Effect. When clicked, you can add audio
effects that are built into Godot. For a full list of effects and what
they do, see the documentation:
https://docs.godotengine.org/en/stable/tutorials/au
dio/audio_effects.html#doc-audio-effects.
Audio bus output: The last dropdown (currently Speakers is
selected in Figure 7.3) is where the bus will be routed to. In the
Master bus, this is grayed out as it cannot be routed to any other
buses, but when we add additional buses, we can select which
bus they feed to.

Understanding the properties of an audio bus is important for the
role they play on the audio bus. Looking back at Figure 7.2, notice
the bu�ons in the top-right corner. Here, we can load the default bus
layout (what you see now), save our current bus layout, and create a
new layout. The audio bus layout is a resource that holds the Master
audio bus and any additional audio buses we create.

From the bu�ons in the top-right corner, we can also add new audio
(i.e., a new channel for audio to go through). We will do this now.

https://docs.godotengine.org/en/stable/tutorials/audio/audio_effects.html#doc-audio-effects

Adding audio buses
You can think of audio buses like lanes on a highway. Both the
sound effects and Music audio buses that we’re about to create
represent their own lane – they’re both going in the same direction
(into the Master audio bus) but different cars (audio tracks) drive in
separate lanes.

Now, we’re going to add two buses, one for sound effects and one
for music. Go ahead and select Add Bus. A new audio bus will
automatically appear next to the currently listed ones. Let’s change
the new bus’s name to Music , as I have in Figure 7.4:

Figure 7.4: Adding a new bus and changing its name to Music

By now, we have two audio buses set up. We have the Master audio
bus, which is there by default, and we have the newly added Music

audio bus. Now, we’ll repeat the steps we took but name the third
audio bus SFX (for sound effects). That’s it!

Implementing audio effects
There’s one more important piece of information about audio buses
that we’ll cover before adding our first audio track. If we continue to
look at the Audio panel, we can see that below the volume se�ings
for each audio bus, there’s a drop-down option to add an audio
effect, as shown in Figure 7.5:

Figure 7.5: Adding an audio effect to a specific bus

Clicking into the dropdown gives a long list of audio effects, such as
distortion, amplification, and reverberation, that we can add to the
Music audio bus. In Figure 7.5, I’ve added the Distortion effect. Once
added, the audio effect will be selected under the audio bus it was
added to.

Clicking the word Distortion provides us with a set of properties we
can change in the Inspector dock, as shown in Figure 7.6.

Figure 7.6: The properties of the Distortion audio effect

Each effect has its own set of properties. Here, Distortion has one
called Mode, as shown in Figure 7.6. The Mode property gives you
the option of the type of distortion you want. For example, I’ve
selected the LoFi option. The other properties listed relate to how the
volume is manipulated before, during, and after the effect is active.

Once the effect is added, you can toggle it on and off and hear the
difference when we test our game. This will be once our audio tracks
are added, which come later in this chapter. For a detailed view of

the audio effects available, you can look here:
https://docs.godotengine.org/en/stable/tutorials/audio/
audio_effects.html.

Now that we know how to create audio buses and add audio effects
to them, let’s look at how we can add specific audio tracks to our
scenes.

Adding sound effects to the UI
Adding sound effects to the UI we designed is going to make
interacting with our game feel more alive. What we’re going to do is
add an audio file to our main menu and then trigger audio to play
when we click any of our main menu bu�ons (Play, Se�ings, Credit,
and Quit).

Setting up the AudioStreamPlayer
node
Start by opening the MainMenu.tscn scene and adding a new node by
clicking the + sign in the Scene dock – we’ll add an
AudioStreamPlayer node (since the audio from this node will be on
the main menu scene, the position of it does not ma�er, which is
why we’re not using AudioStreamPlayer2D or
AudioStreamPlayer3D). Rename this node in the scene to
MainMenuTransition .

Now, we need to either create or find sound effects to add to the
game. You can use the sound effects provided in the GitHub
repository of this book (MainMenuTransition.wav), or you can create

https://docs.godotengine.org/en/stable/tutorials/audio/audio_effects.html

your own. I created mine by using ChipTone, a free browser tool
that’s available on itch.io
(https://sfbgames.itch.io/chiptone).

Note

If you are finding or creating your own sound effects,
make sure that the audio file is either a .wav , .ogg , or
.mp3 file, as those are the only three formats that Godot
accepts. There are advantages and disadvantages to
using each format. You can read more about that here:
https://docs.godotengine.org/en/stable/tutor
ials/assets_pipeline/importing_audio_samples
.html.

Once you have an audio file, click and drag it into our FileSystem
dock within Godot. I’ve added mine to the user_interface folder as it
will be used in the MainMenu scene. Once imported, go rename it to
MainMenuTransition , as I have done in Figure 7.7:

http://itch.io/
https://sfbgames.itch.io/chiptone
https://docs.godotengine.org/en/stable/tutorials/assets_pipeline/importing_audio_samples.html

Figure 7.7: Importing audio tracks into Godot

With our audio node created and our audio file imported, select the
MainMenuTransition node in our scene dock to see its properties in
the Inspector doc. They are also shown in Figure 7.8:

Figure 7.8: The AudioStreamPlayer node properties

As we step through each property on this node, please note we will
only be changing the Stream and Bus properties. All others will
remain at their default levels. However, it’s still important to

understand how each property impacts the node and project overall,
so we will be reviewing each of them here:

Stream: This is where we will load our audio track. You can
browse for the audio file by clicking the drop-down arrow and
selecting Load, or you can click and drag your audio file to the
Stream property. Either way, load the selected SFX audio file
into the Stream property.
Volume dB: This is the volume of the chosen track. It can
override what the default bus value is.
Pitch Scale: This uses the audio file’s sample rate as a multiplier
to determine the pitch and tempo of the audio file.
Playing: When this property is checked, then the audio file is
playing.
Autoplay: When this property is checked, the audio file will
play as soon as it’s loaded onto the scene.
Stream Paused: This property will pause the audio file when set
to true. Set it to false to continue playing.
Mix Target: This property determines the channels the audio
will be played through. It’s useful to adjust when players have a
surround-sound center or are using headphones versus
speakers.
Max Polyphony: This property allows multiple sounds to be
played at the same time. Once the maximum number of
polyphony sounds is passed, the older sounds will cut off.
Bus: This property has access to the list of audio buses we
created in AudioBusLayout. Set this property to SFX.

To reiterate, we are only changing the Stream and Bus properties
here. Now, if we hit the play bu�on to run our game, we still would
have no audio. This is because we haven’t wri�en any code to tell
this audio track to play. To fix this, let’s dive into our MainMenu.cs file.

Coding our sound effects
To code our sound effects, first, we’ll get a reference to our audio
node by adding this variable to the top of our MainMenu.cs script:

private AudioStreamPlayer audioPlayer;

Next, in our _Ready() function, we’ll assign the new variable to a
reference of our audio node:

audioPlayer = GetNode<AudioStreamPlayer>("MainMenuTransition");

Be sure that the text in quotes is set to MainMenuTransition here because
it needs to match the name of the node in your scene dock.

In Chapter 6, we created a signal called OnPlayClicked() in
MainMenu.cs that would hide our main menu and change the player
view. Within that function, we’re going to add this line of code right
before our this.Visible = false line:

audioPlayer.Play();

This line accesses the Play function within the AudioStreamPlayer class
in Godot and will start the audio track that’s loaded into the node’s
Stream property.

Now save the script and run your game. When you click play, notice
something happens here – the UI animation for the main menu that
we added in the previous chapter doesn’t play. However, the audio
plays, and the main menu disappears like it’s supposed to.

What’s happening here is that as soon as we call Play on our
animation, we also immediately call Play on the audio, and then
force the main menu to be hidden. The animation needs to finish
before we call this.Visible = false , otherwise, it gets skipped.

To force our program to wait until the animation is done, we’re
going to utilize some features of C# and the .NET library. Within any
programming language, there is something called keywords – these
are reserved words that can’t be variables or function names as they
have a specific function within the language. As C# has expanded
and been further built open, more keywords have been added. These
are called contextual keywords because they are additional
keywords that were not part of the original set of keywords when C#
was created. The ones we’ll be using are the async and await ones.
This will bring asynchronous programming into our project.

Note

If you are unfamiliar with what asynchronous
programming is, you can read more about it here:
https://learn.microsoft.com/en-
us/dotnet/csharp/asynchronous-programming/.

Alongside the two new keywords mentioned, we’ll be utilizing the
System.Threading.Tasks library for access to the Task functions (again,

https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/

these are all part of.NET Framework). Tasks allow for asynchronous
programming in C# through the usage of the async and await
keywords. To add this library, go to the top of our MainMenu.cs file
and add the following code under the using System; line:

using System.Threading.Tasks;

Next, create our asynchronous method and call it HideMenu() :

public async void HideMenu() { }

This means that when this function is called, like when our play
bu�on is clicked, it will run everything inside the function until it
hits the word await . Once there, it will suspend execution until
whatever is after await is completed.

Inside this function, we want to create a Task that will wait until the
animation is over. Essentially, we’re using Task to create a time delay
and using the async method to wait until X amount of time has
passed before executing the rest of UI logic/changes in our main
menu transition. To do this, write the following line:

await Task.Delay(TimeSpan.FromSeconds(1));

Again, when await is read within an async method, it will not move
on to the next line of code until the code to the right of the await
word has finished executing. More specifically, the Task we created
calls a Delay method from its library of functions. Within our call on
Delay , we’ll use the TimeSpan object and access its method called

FromSeconds . We pass in the number 1 to the FromSeconds method,
which takes double – this is a type of data structure for numbers in
programming, specifically floating-point numbers, such as 3.33 or
5.99 . We could put any number we wanted in here, but we are
specifically choosing 1 . We do this because we know the main menu
animation is no longer than one second. Therefore, the animation is
guaranteed to be completed before executing the rest of the async
method.

Now, we’ll move the this.Visible = false line underneath our await
line, so it should be completely removed from the OnPlayClicked()
function. Instead, we’ll add a call to our async function by typing
HideMenu() after playing both our animation and audio players. The
two functions should look like this:

public void OnPlayClicked()
{
 GD.Print("Play button clicked");
 animPlayer.Play("MenuTransition");
 audioPlayer.Play();
 HideMenu();
}
public async void HideMenu()
{
 await Task.Delay(TimeSpan.FromSeconds(1));
 this.Visible = false;
}

Note

Alternatively, we don’t have to use Task . I wanted to
use them here to highlight how to utilize C# vast set of
libraries. Yet, we can leverage Godot’s signals system

by creating a signal timer in code and writing: await
ToSignal(GetTree().CreateTimer(1f),

SceneTreeTimer.SignalName.Timeout); .

.

Regardless of the method, let’s test the game again and see what
happens. Once we click play, the menu should slide to the bo�om of
the screen all while playing its sound effect. Then, our camera
should change to our player, and we should be able to play.

Now that we have sound effects triggering when the player interacts
with the main menu, let’s turn our a�ention toward adding music to
our world.

Adding music to our scenes
Music can help bring a game environment to life and set the tone as
a player navigates that space. Here, we’re going to spend some time
adding and triggering music to play in our world after leaving our
main menu.

First, find a suitable song for your game. There are many sites out
there that provide free tracks such as Kevin MacLeod’s website
(https://incompetech.com/). Just remember to thoroughly review
the license, make sure you credit the work properly, and that it is a
Godot-compatible format. Or, if you are a composer, you can create
one yourself!

I’m going to be using Midnight Tale.wav by Kevin MacLeod (which
you can find in the GitHub repository; see the Technical requirements

https://incompetech.com/

section). This track sounds very much like you’re in a tavern or
wandering through some woods. Whether you are using the same
track or a different one, download and import it by dragging the file
into the FileSystem dock. I’ve placed mine in the World folder, as
shown in Figure 7.9:

Figure 7.9: The FileSystem dock after importing a music track

Note

If the license for the music requires a�ribution, create
a Credits bu�on in your MainMenu.tscn scene and link it
to a newly created Credits page, where you provide
the a�ribution information.

Once done, close the MainMenu.tscn scene and open our World.tscn
scene. Click the + icon on the scene dock, add another
AudioStreamPlayer node, and rename it to WorldMusic . Even though
we are working in a 3D space, we want the music to be heard
throughout the scene and regardless of position, so we won’t be
using the 2D or 3D positional audio nodes.

Select the WorldMusic node and drag the audio file into the Stream
property just as we did for the sound effect. Then, be sure to set the
Bus property to Music. The properties for the WorldMusic node
should look like those in Figure 7.10:

Figure 7.10: The WorldMusic node properties

Now, let’s test the scene out, making sure we did not break anything
by adding these new components. As expected, the game runs
normally but does not play our new music. Let’s open our World.cs
file and create the variables and functions needed to run our music.

Under the class definition, let’s add a new variable of the type
AudioStreamPlayer for the audio node within the World.tscn scene, like
so:

private AudioStreamPlayer worldMusic;

Then, at the bo�om of the class, create a new function called
TriggerWorldMusic() :

public void TriggerWorldMusic() { }

Within this function, add the call within the AudioStreamPlayer
node’s class to play the music by writing the following:

worldMusic.Play();

In Chapter 6, we nested our main menu scene into the World.tscn
scene with its own camera, se�ing it up so that when we clicked
play, the camera changed, and our player could move. Now, we
could set these triggers up in the _Process function of our world, and
although it works, it’s not the best solution we can implement. So,
we’re going to go ahead and migrate some of the code to the new
function we created and improve upon the work we did in Chapter
6.

The following lines of code should be moved to the
TriggerWorldMusic() function after the worldMusic.Play(); line:

menuCamera.Current = false;
player.ProcessMode = ProcessModeEnum.Always;

Input.MouseMode = Input.MouseModeEnum.Captured;

The if statement that these lines were in can be deleted, so now, our
_Process function should be empty.

Now, the World.cs scene will have only two functions, _Ready() and
TriggerWorldMusic() , alongside the variables that have been declared at
the top. The _Ready() function should look like this:

public override void _Ready()
{
 menuCamera = GetNode<Camera3D>("MenuCamera");
 player = GetNode<CharacterBody3D>("Player");
 worldMusic = GetNode<AudioStreamPlayer>("WorldMusic");
 if (menuCamera.Current)
 {
 Input.MouseMode = Input.MouseModeEnum.Visible;
 player.ProcessMode = ProcessModeEnum.Disabled;
 }
}

The TriggerWorldMusic() function should look like this:

public void TriggerWorldMusic()
{
 worldMusic.Play();
 menuCamera.Current = false;
 player.ProcessMode = ProcessModeEnum.Always;
 Input.MouseMode = Input.MouseModeEnum.Captured;
}

The last thing to do to get our music playing is to call the new
function. We want to call it in the HideMenu() function in our
MainMenu.cs file because we want the music to play after the menu is
hidden. Godot has a convenient function to do this called GetOwner ,

which allows us to get any valid parent from the node we’re calling
from.

Since MainMenu.tscn is nested in our World.tscn scene, the root of the
scene is our World node. The World node has the World.cs script
a�ached to it. We’ll create a local World variable to access the node
and its properties by typing this in our HideMenu() function after the
this.Visible = false; line.

World root = GetOwner<World>();

Here, we’ve created a World variable called root and set it equal to
what GetOwner is returning. The type we have GetOwner retrieve is of
World , just like our variable.

Now, we can call any functions that are part of World , using root like
this:

root.TriggerWorldMusic();

To ensure this only runs once, let’s put a print statement to the
Godot console by typing the following inside the TriggerWorldMusic()
function:

GD.Print("About to start music.");

Typing GD is one way to access Godot’s global functions, and print is
one such function. This will print whatever you put in parenthesis
out to the Godot console. We can pass either messages such as

“Hello world!” or other useful things such as logging game states or
tracking variables.

Note

You can read more about Godot’s global functions
here:
https://docs.godotengine.org/en/latest/tutor
ials/scripting/c_sharp/c_sharp_differences.h
tml.

Finally, save both our MainMenu.cs and World.cs files and test the
game. When we hit play and are dropped into our world, music
should begin playing. We should also see a print statement in
Godot’s output console like in Figure 7.11:

Figure 7.11: The Godot Output console after clicking the play bu�on or hi�ing F5.

With both sound effects and music being added to our game, let’s
look at how to combine everything we’ve covered so far in this
chapter by adding volume sliders to our se�ings page.

https://docs.godotengine.org/en/latest/tutorials/scripting/c_sharp/c_sharp_differences.html

Making our settings page functional
In Chapter 6, we designed and laid out how the se�ings page looks.
Now, it’s time to make the volume sliders functional. We’ll create
signals to trigger the sliders to update as we change their value.

Tying Music to our MusicSlider
Open our Settings.tscn scene, select the node named MusicSlider,
and look at the Inspector dock. As seen in Figure 7.12, there are lots
of properties, however, we will just be adjusting four:

Tick Count: This property determines the number of ticks
shown on the slider that the slider can move through. This is a
visual property only. We will set this to 1 .
Max Value: As the name describes, this is the max value the
slider can be set to. We’ll also set this to 1 .
Step: This property determines the value changes each time the
slider is moved. We’ll set this to 0.05 .
Value: This property sets the starting value of the slider. We’ll
set this to 1 because we want the music to be set to max volume
by default.

Figure 7.12: The MusicSlider node properties set correctly

Now, save the scene and run the game. Select the Se�ings bu�on
and test MusicSlider out by dragging the slider handle from left to

right.

Now, we want to mimic what we did for the MusicSlider with the
SFXSlider. The only difference here will be the audio bus that we
connect the slider to, which will be the SFX bus. We can connect the
SFX music bus to the Music SFX slider (MusicSlider) in our Se�ings
scene. Select SFXSlider in the scene dock and consider its properties
in the Inspector dock. We are going to take a moment to match the
properties of both the Music and SFX sliders since they function at a
UI level in the same way.

We’re going to set the Tick Count, Max Value, Step, and Value
properties to the same values that we did for MusicSlider. This is
because we want the way our player interacts with both sliders to be
the same.

With the properties of each slider set, go back to MusicSlider and
connect the Godot signal to a function in our Settings.cs script. This
is how we’ll tell Godot when to fire the music. To get started, we’ll
keep the MusicSlider node selected in the scene dock. From there,
click the Node tab at the top of the Inspector dock to access our list
of signals. Once again, we’re going to utilize the value_changed(value:
float) signal. Double-click it and a popup menu will appear. We’ve
seen this popup before but as a reminder, it will look like Figure 7.13:

Figure 7.13: Popup menu for connecting a signal to our script

Notice that, in the Receiver Method box, it says
_on_music_slider_value_changed . We’re going to change that to
ChangeMusicVolume and click Connect.

Now, if we open our Settings.cs file, we’ll add the variables and
functions we need. To access the audio bus for music, we need to
declare a variable. Above our _Ready function, add the following line:

private int musicBus;

Each audio bus not only has a string (aka name) to identify it, but we
also have a number. As we add audio buses, the order in which
they’re placed in the AudioBusLayout resource (main_bus.tres in our
project) will determine their index number.

Now, inside the _Ready function, we’ll write this line:

musicBus = AudioServer.GetBusIndex("Music");

This line uses the GetBusIndex function from the AudioServer class to
find the right index based on the name we set in the main_bus.tres
resource. Recall in Figure 7.4 how we renamed the audio buses Music
and SFX , respectively. To confirm the variable is set correctly, we can
add a line after this one that prints out the value of musicBus , like so:

GD.Print(musicBus);

Now, when we run our program, when we navigate to the Se�ings
screen, we should get a printout of 1 for the musicBus variable.

With our variable set, we can move on to adding the function we
need to adjust the volume of the music bus. Inside our Settings.cs
file, right after the OnSettingsClose function, we’ll declare a new
function with the following line:

private void ChangeMusicVolume(float value) { }

The ChangeMusicVolume function, much like the signal, takes in a double .
What will happen is when MusicSlider changes its value (i.e., the
player moves the slider), then the value_changed(value: float) signal
will fire, passing the float variable to our ChangeMusicVolume function.
With this float variable, we’ll use it to change the volume on the
audio bus. Therefore, our next line inside the function looks like this:

AudioServer.SetBusVolumeDb(musicBus, Mathf.LinearToDb(value));

Here, we access a function in the AudioServer class of Godot called
SetBusVolumeDb , which takes two parameters:

The first parameter is the audio bus that we’re adjusting the
volume for via its index number, which we set in the _Ready
function. For MusicSlider, we’re naturally adjusting the music
bus.
The second parameter that SetBusVolumeDb takes is the value the
volume level should be for the chosen audio bus. Notice that the
float variable we talked about earlier is being converted by a
Mathf library function. The variable is converted from a linear
number to one in decibels. This allows the slider values to make
sense in decibels.

Note

Mathf is a C# library that’s available in any C# script
with a set of built-in mathematical operations.

Now, save the scene, and let’s test it out. To test it, we need to do a
li�le bit of work. First, we need to import an audio file and set it up
in our MainMenu scene. Go ahead and find a piece of music that
you’ve either created or have the rights to use in your project. Then,
drag the file into the FileSystem dock to import it into the project,
ensuring it’s placed in the correct folder. I’ve placed mine in the
user_interface folder for now.

Next, open the MainMenu.tscn scene and click the + sign at the top of
the scene dock. Add an AudioStreamPlayer node to the scene and
rename it MainMenuMusic . It should sit right under the
MainMenuTransition node.

With the MainMenuMusic node selected, look at the Inspector dock
where our list of node properties appears. In the Stream property,
click the down arrow and select the Load option, as shown in Figure
7.14:

Figure 7.14: Adding an audio file to an AudioStreamPlayer node

Once Load is selected, browse to your audio file and select it. Enable
the Autoplay checkbox and, most importantly, set the Bus property
to Music. Save the scene. Now, you should be able to test
MusicSlider by navigating to the Se�ings screen and adjusting
MusicSlider. It should update as the slider moves without any other
input.

Nice! Now, we’ll just need to repeat almost all these steps for
SFXSlider.

Tying sound effects to SFXSlider
First, connect a signal to our slider so that it fires when we adjust the
slider. Open the Settings.tscn scene and select the SFXSlider node.
Click the Node tab next to the top of the Inspector dock. Then,
double-click the value_changed(value: float) signal. A popup menu
will appear just like in Figure 7.13. Change the name of the Receiver
Method box to ChangeSFXVolume and click Connect.

Save the scene and open the Settings.cs file. We’ll declare a variable
above the _Ready function for our SFX bus like this:

private int sfxBus;

Then, within the _Ready function, we’ll set our sfxBus variable to the
correct bus by writing the following:

sfxBus = AudioServer.GetBusIndex("SFX");

Next, we’ll create a new function after ChangeMusicVolume and write the
following function declaration:

private void ChangeSFXVolume(float value) { }

Within our function, we’ll set the volume in decibels to the correct
audio bus by writing the following:

AudioServer.SetBusVolumeDb(sfxBus, Mathf.LinearToDb(value));

Save the script and navigate to our MainMenu.tscn scene. Make sure
the MainMenuTransition node is set to the correct audio bus. Select
it and look at its properties in the Inspector dock. The Bus property
should be set to SFX.

With that confirmed, go ahead and test SFXSlider. To test it, launch
the game, navigate to the Se�ings page, and drag SFXSlider all the
way to the left-hand side, which should mute any SFX that plays.
Confirm this by exiting the Se�ings page and clicking the play
bu�on. With SFXSlider set to 0 , you should not hear the
MainMenuTransition node after clicking the play bu�on.

Summary
This chapter was all about adding audio to our game. We looked at
what audio buses were and how to create them. We created an audio
bus layout resource to hold our different audio buses. Then, we
looked at how to fire off sound effects at the end of the main menu
animation we created in Chapter 6. While adding our sound effects,

we spent time looking at how to utilize Task from a C# library to
make sure our sound effects fired in time with our animation. We
also added functionality to the volume sliders we created in
Chapter 6 for both our music and sound effect audio buses, then
we added logic to make those sliders functional.

In the next chapter, we’re going to break down how navigation and
pathfinding works. Specifically, we’ll create a navigation mesh and
add a series of markers to create a wandering non-player character
(NPC) in our game. This will give our NPC a specific route where
each point of the route will be chosen at random.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

http://packtpub.com/unlock

8

Adding Navigation and
Pathfinding

Currently, we have a small, cozy game where we can collect
mushrooms and run around our world. We also have a UI to
navigate through the different menus, and in the previous chapter,
we added audio to boost the ambiance of our game.

Now, we’re going to look at filling our game with non-playable
characters (NPCs) and utilizing the navigation nodes within Godot
to make those NPCs wander about our forest land. Pathfinding and
general navigation can be a huge component of your game,
depending on the se�ing. If you’re looking to populate a town with
people and make it feel alive, then wandering NPCs could be
extremely valuable. You could be creating a multiplayer game that
uses escort missions. Then, the escort would need to know the path
to get there.

In this chapter, we’ll learn about the nodes Godot provides to create
pathfinding, and then we’ll use some of those nodes to create
wandering NPCs in our world. To do that, we’ll create a navigation
mesh and see how to program a pre-determined path for an object.
After understanding Godot’s navigation nodes, we’ll program our
NPC to move from point to point, chosen randomly. When an NPC

arrives at a point on the path, we’ll create a timer to delay them
moving to the next point to make our NPC feel more life-like and
smoother.

Our goals for this chapter are the following:

Understanding navigation nodes
Creating a navigation mesh
Creating an NPC
Adding autonomous movement

Technical requirements
For this chapter, the technical requirements are the same as in
Chapter 1.

All the code from this chapter is available in the GitHub repository
here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Understanding navigation nodes
Much like the audio nodes we spent time learning about in the
previous chapter, navigation nodes in Godot also feature a 2D and
3D set, as seen in Figure 8.1. The only difference between the 2D and
3D sets is whether they’re used on a 2D or 3D plane. The usage and
logic for both are relatively similar.

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-

Figure 8.1: The navigation scene nodes available in Godot

Let’s break down what some of these nodes do and briefly discuss
how we’ll utilize them (each of these nodes has many properties
within them, but don’t worry, we’ll only be adjusting a few as
needed):

NavigationMesh: A navigation mesh is a resource for an area
defined as navigable by navigation agents. While it is not a node
in Figure 8.1, it is a critical resource that we will be interfacing
with when using the navigation modes. So, if a navigation
mesh, or NavMesh for short, doesn’t cover a part of our level,

then the NPC, our navigation agent, won’t be able to traverse
there.
NavigationAgent: This node is used in conjunction with
NavigationRegion and NavigationMesh to ensure a path is
viable and to avoid obstacles. They are the actors that look for a
viable path to navigate. For example, our NPC will be the
navigation agent in this chapter.
NavigationLink: This node connects two points on a navigation
mesh.
NavigationObstacle: This node allows the placement of
obstacles to augment the path a navigation agent would take on
a navigation mesh.
NavigationRegion: This node will hold our navigation mesh
resource, which will be a defined area for our NPC to traverse
on.

A few objects that aren’t listed as scene nodes but can be extremely
useful are the Astar3D and NavigationServer objects – the Astar3D
object will allow us to implement the A* pathfinding algorithm for
our NPCs, and the NavigationServer object is a server API that finds
the shortest path between two points of a navigation mesh. For a
more detailed look at any of these nodes, you can check out the
documentation here:
https://docs.godotengine.org/en/stable/tutorials/naviga
tion/index.html.

Note

https://docs.godotengine.org/en/stable/tutorials/navigation/index.html

From here on out, navigation mesh will be shortened
to NavMesh, which is how it is often referred to.

With a be�er understanding of the nodes available to use, let’s create
our NavMesh for our navigation agent to move around on.
Remember, the NavMesh defines the region that the navigation
agent can move through.

Creating a navigation mesh
To create a NavMesh, open our World.tscn scene and click the + sign
to add a new node. Search for NavigationRegion3D, then select it
and add it to our scene tree. Once done, keep it highlighted in the
Scene dock and look at its properties in the Inspector dock.

The first property listed will be Navigation Mesh, but currently,
there is no NavMesh – the property should be empty. So, click on the
word <empty> and select New NavigationMesh, as shown in Figure
8.2:

Figure 8.2: Creating a new NavigationMesh resource

Now, if we look at the Viewport, it doesn’t look like anything has
changed since creating the NavMesh. There are two reasons for this.
They are the following:

The first reason is how our scene is structured. Every object that
will have a NavMesh on it for our NPC to traverse must be a
child node of the NavigationRegion3D node.
The second reason is that we need to bake the NavMesh for it to
render viable pathing in our scene.

Let’s step through and resolve each of these issues.

Within our World scene, we’ve structured the Scene dock in a way
that’s categorical. All the trees, ground, and terrain are parented
under their own Node3D objects, as shown in Figure 8.3. This kept
my World scene clean and now makes it extremely easy to apply my
NavMesh to my world. Depending on how you designed your level,
it could look different, but the objects I’m placing under my
NavigationRegion3D can be seen in Figure 8.3. Make sure that
whatever objects you want your NPC to both navigate on and avoid
are included as a child of the NavigationRegion3D node.

Figure 8.3: Every object in our level with a NavMesh

Notice that in Figure 8.3 each of these Node3D objects has multiple
children under them. All of these will be considered when creating
our NavMesh. The purpose of adding our NavMesh to all these
objects is to prevent our NPC from running into them as they
wander throughout our level.

Now onto the second reason why our Viewport appears unchanged.
Even though we have parented the correct objects underneath our
NavigationRegion3D, there is no difference in the Viewport. This is
because we need to bake our NavigationMesh into the world.

In game development, the term baking has a variety of uses. In
general, it means creating and storing data that does not require any
live calculations during gameplay. The most common examples of
baking refer to lighting and textures, but it’s also applicable to
navigation and pathfinding. Let’s go ahead and bake our NavMesh
now to create a pathable area for our NPC.

Note

Every time you add or remove objects from the
NavigationRegion3D node, you must re-bake your
NavMesh for it to update.

Select the NavigationRegion3D node in the Scene dock, and there
will be a new option directly above the Viewport, Bake
NavigationMesh, as shown in Figure 8.4:

Figure 8.4: The NavigionationRegion3D node options for our NavMesh

Go ahead and select Bake NavigationMesh. Now, you should see a
change in the Viewport. Everywhere our NPC can traverse will be
highlighted with a mesh, illustrated in Figure 8.5.

Figure 8.5: The NavMesh baked and generated in our world

Note

I’ve toggled off the rain particles for be�er visibility in
Figure 8.5. You can do the same by selecting the
eyeball icon in the Scene dock next to any node.

Excellent, we now have a functional NavMesh in our World scene.
Next, we’re going to create an NPC that will wander around our
level based on specific points within our NavMesh.

Creating an NPC

To create our NPC, create a new scene by clicking the + sign above
the Viewport. Then, select Other Node and search for
CharacterBody3D .

We’ll go through a very similar process to what we’ve already done,
where we add collision and a mesh to an object, creating our NPC.
Much like with our Player scene, we need both a collision and a
mesh node for physics and collision. Click the + sign in the Scene
dock and search for a CollisionShape3D node.

With the CollisionShape3D node highlighted, look at its properties
in the Inspector dock. The first property, Shape, currently says
<empty>, and we need to create a shape resource to create collisions.
Click <empty> and select New CapsuleShape3D.

Once our CollisionShape3D node is added and has a shape, there
should be blue lines in the shape of a capsule at the origin of our
scene. It will look like Figure 8.6:

Figure 8.6: The capsule-based collision shape for our NPC

Next, we’re going to add a mesh as a child node of our
CollisionShape3D. As before, click the + sign in the Scene dock and
search for MeshInstance3D . Select it and drag it underneath the
CollisionShape3D node. The scene tree should look like Figure 8.7:

Figure 8.7: The current node tree for our NPC

After adding the MeshInstance3D node, highlight it and look at its
properties in the Inspector dock. The Mesh property will be set to
<empty> by default. Click <empty> and select New CapsuleMesh. A
small gray capsule should appear in the Viewport of our NPC scene,
as shown in Figure 8.8:

Figure 8.8: The NPC collision body in the shape of a capsule

Note

Using capsules for both collision shapes and mesh
instances is an excellent way to prototype when you
don’t have animations or are using a first-person view
to test other systems. Since players will not see the
capsule in a first-person Viewport, it ma�ers a lot less
what the shape and feel of the player is. You can still
test interaction systems and how a level feels to

navigate in first person without a fully polished player
controller.

The last thing we’ll add to our scene is a NavigationAgent3D node.
Click the + sign, search for NavigationAgent3D, and select it. This
node has a target position it uses to determine a path forward. It
checks for a new navigation path and allows our NPC to go from
point A to point B and so on in our scene.

Once this node is added to our scene, let’s make sure the agent
knows to avoid objects in our scene. You’ll notice there are three
property headings: Pathfinding, Avoidance, and Debug. Let’s
expand the Avoidance heading, and you will see a set of properties
like Figure 8.9:

Figure 8.9: The Avoidance properties of our NavigationAgent3D node

The first property listed, Avoidance Enabled, is turned off by
default. Let’s go ahead and turn this on. As its name suggests, this

means the agent will navigate the NavMesh in a way that avoids
obstacles.

Click back to the CharcterBody3D node in our scene tree and
rename it to ForestDweller . We’re going to update the Collision
property, so it can interact with our world correctly. Remember, we
have a collision layer for our world, player, and collectibles so far.

We’ll create a new layer for our NPC by clicking the three vertical
dots to the right of the block of Layer numbers. You can find the
Layer block under the Collision property, as pictured in Figure 8.10:

Figure 8.10: Adding a new collision layer for our NPC

Then, we’ll click Edit Layer Names. This will give us a new pop-up
window that lists the currently created layers and their names. You
can see it in Figure 8.11. The rest of the properties we’ll leave alone
for now:

Figure 8.11: The collision layer names in our project

On Layer 4 of the pop-up window, type npc into the box, which you
can also see in Figure 8.11. Once that’s done, click the Close bu�on.

Now, be sure to set the Layer property for Collision for
ForestDweller to 4. If you hover over it, a tooltip appears that shows
how Layer 4 is the npc layer we just named, as shown in Figure 8.12.

Figure 8.12: Hovering over the layer on the Collision property

Remember, for the Collision property, the layer is the collision for
that object, while the mask is what that object collides with. For
Mask, we’ll set it to 3, because we want our NPC to collide with any
of our world objects.

Now, save this scene. The scene is currently named NPC.tscn;
however, that is rather vague, so I decided to name my NPC scene
ForestDweller.tscn instead.

With our NPC created and our NavMesh baked, we can start to look
at how to create a patrol for our NPC to utilize in our World scene.

Adding autonomous movement
Creating a patrol for an NPC is a common feature of games,
especially open-world ones. Once we’ve finished creating one
patrolling NPC, it’s easy to add multiple, as we’ll instantiate the
ForestDweller.tscn scene as needed. Before that, though, we’ll need to
provide logic for our NPC to move autonomously. We’ll create a set
of pre-selected points on our NavMesh. After choosing the points,
we’ll write code to have our NPC randomly choose one to move
toward. Let’s go ahead and implement NPC wandering now.

We’ll start by opening the World.tscn scene and then dragging our
ForestDweller.tscn scene from the FileSystem dock into the scene tree
of our World scene. Feel free to place your NPC anywhere in the
world; however, just make sure it’s on the ground and not colliding
with our player, any collectibles, or any other object in the scene
(e.g., it’s not overlapping with trees).

To adjust the position of ForestDweller.tscn in the World scene, click
the ForestDweller node in the Scene dock and find the Position sub-
property under Transform in the Inspector dock. There, you can
directly enter the position coordinates. I’ve placed mine at the
following points: x: 0 , y: 0.8 , and z: -4.8 . You can see the placement
of the NPC in the game in Figure 8.13:

Figure 8.13: ForestDweller.tscn placed in our world as seen in the Viewport

Great! Now, we’re going to add a set of marker points in the level
that our NPC can choose from. Then, we’ll use those marker points
to write code to have our NPC randomly choose a new point to path
toward.

Adding marker nodes
To add our marker points, select the ForestDweller node in the
scene tree, then click the + sign at the top of the Scene dock. In the

pop-up menu, type marker and the results should look like Figure
8.14:

Figure 8.14: Searching for marker nodes

As with many nodes in Godot, we have both 2D and 3D options. We
are going to select the Marker3D option. Once we click Create, the
Marker3D node will be added as a child to our ForestDweller node.
Rename Marker3D to Patrol1 .

Repeat this process three more times until we have four patrol
points. Just as we did with placing our NPC in the World scene,
we’ll move the patrol points to various places on the NavMesh. I’ve
set the Position property for each marker to the following places in
the level:

Patrol1: x: 4.2 , y: 0 , and z: 0.186
Patrol2: x: 11.5 , y: 0 , and z: -5
Patrol3: x: 11.5 , y: 0 , and z: 1.5

Patrol4: x: 8.42 , y: 0 , and z: 7.29

The patrol points should be placed similarly to how they are laid out
in Figure 8.15.

Figure 8.15: The patrol points placed in the level

I’ve toggled off the rain particles for clarity in the image. Notice how
the marker nodes only have two black lines extending out from their
origin. This is a gizmo in the editor to show where the points are in
the Viewport. These can be made larger by making the Gizmo
Extents property of the Marker3D nodes larger. The default is 0.25,
which is what I’ve left mine at as well.

Note

You can toggle the visibility of any node in a scene by
clicking the eyeball icon that’s to the right of the node
in the Scene dock.

Excellent! Now that we have our NPC in the World scene and our
markers have been placed, we can turn to programming the NPC to
move through a set of points as marked on the NavMesh.

Adding code to World.cs
Start by clicking on the script icon next to the World node in the
World.tscn scene to open the Word.cs file. This file will hold all the
code and logic relating to the patrol points and the patrol itself.

Once open, we’re going to create four different variables for our
patrolling NPC above our _Ready function. The variables will be the
following:

private Vector3 currPatrolPoint;
private List<Vector3> patrolPoints = new();
puiblic bool moveNPC = true;
private int patrolNum = 0;

Let’s look at each one:

The first variable is as follows:

private Vector3 currPatrolPoint;

The Vector3 variable holds the current patrol point that our NPC is
on. Since we’re choosing a random point from our set of patrol
points, we need to make sure we don’t choose the one we’re already
at. Otherwise, our NPC would not move.

Next, we’ll create a list of the patrol points that we’ve created in
the World.tscn scene by creating a second variable called

patrolPoints :

private List<Vector3> patrolPoints = new();

This list, just like the patrol points, is of the Vector3 type, since we’re
working in a 3D space.

The next variable to create is a Boolean:

public bool moveNPC = true;

This Boolean allows us to pause our NPC. This is useful for a couple
of different reasons. The first is we want our NPC to not be moving
while our player is on the main menu screen. The second is when
our NPC moves to one point, we want it to stay there for a few
seconds before choosing another patrol point. The Boolean provides
a simple and easy toggle to control this.

Our final variable to add is an integer, which will track which of
the patrol points from our list we’re on. It will also be a number
we randomly choose and then pull from the list at that index:

private int patrolNum = 0;

Now, let’s add some functionality to the variables we just created.
We’ll start by creating a function that will get a random patrol point
for our NPC. Below our PlayerStart function, declare a new one by
typing the following:

public void ChooseRandomPatrolPoint() { }

This function won’t take any variables, and it won’t return any
either. All it will do is manipulate the variables that exist in this
class.

Then, inside this function, add a line of code that will randomly
select a number between 0 and 3, which are the possible indexes of
our patrol point list. We’re creating a random number by leveraging
the Random class that’s part of C#. To access the Random class, must
write using System ; at the top of the World.cs script. Now, we’ll create
a new random object inside this function:

Random rInt = new();

Here, we’re creating a new integer variable called prevPatrolNum and
assigning it to whatever our current patrol point is in the patrolNum
variable. We do this because we’re going to randomly select a
number until we get a number that’s not patrolNum :

int prevPatrolNum = patrolNum;

Next, we’ll create a while loop to hold the code for randomly
selecting a number like this:

while(prevPatrolNum != patrolNum) { }

For example, if our NPC moved to point 2, and our Random variable
selected the number 2, we’d have patrolNum select another random
number until it’s something other than 2. This guarantees that our

NPC will always move from point A to point B rather than staying in
the same spot.

Now, within our while loop, we’re going to add one line of code:

patrolNum = rInt.Next(0,3);

This is taking our patrolNum variable and se�ing it equal to a number
between 0 and 3. We’re using the Random variable, rInt , that we
created at the beginning of this function and using one of the Random
class functions called Next . You can learn more about the Random class
here: https://learn.microsoft.com/en-
us/dotnet/api/system.random?view=net-8.0.

Before we switch to our ForestDweller.cs scene, we have one more
thing to do. Inside our _Ready() function, we need to add the position
of these Marker3D nodes to the list of patrolPoints . Otherwise, the
list will be empty. To do this, we write the following:

patrolPoints.Add(GetNode<Marker3D>("NPC/Patrol1").GlobalPosition);
patrolPoints.Add(GetNode<Marker3D>("NPC/Patrol2").GlobalPosition);
patrolPoints.Add(GetNode<Marker3D>("NPC/Patrol3").GlobalPosition);
patrolPoints.Add(GetNode<Marker3D>("NPC/Patrol4").GlobalPosition);

Now, let’s pivot to the ForestDweller.cs file to finish writing the code
needed for our wandering NPC.

Adding code to ForestDweller.cs
The ForestDweller.cs script is going to hold the bulk of the logic when
it comes to our wandering NPC.

https://learn.microsoft.com/en-us/dotnet/api/system.random?view=net-8.0

Let’s start by creating two variables:

The first is a speed variable, which looks like this:

private float speed = 1.5f;

You could export this variable to change it in the scene, but I’ve left it
private as I like the speed I’ve set.

The second is a variable to use the NavigationAgent3D node,
which looks like this:

private NavigationAgent3D navAgent;

This will hold a reference to the node in the ForestDweller.tscn scene.

After having created our variable, navAgent , we’ll assign our scene
node to it when the script is first called. Let’s go ahead and assign
the navAgent variable in the _Ready function by typing this:

navAgent = GetNode<NavigationAgent3D>("NavigationAgent3D");

Note

Remember, the GetNode function must have both the
type of node and how it’s named in the scene. The
syntax is this: GetNode<NodeType>("NameInScene"); .

Now, we’re done with the _Ready function and will move on to the
_PhysicsProcess function. Here, we’ll be ge�ing the location of the
NPC and then updating its location and velocity for each frame. The

first line is going to be creating and declaring a Vector3 variable that
will hold the current location of the NPC:

Vector3 currLocation = GlobalTransform.Origin;

We want to capture the current location, because we’ll be using it in
another line of code when determining the velocity between the
current point and the point our NPC will be moving toward.
Therefore, our next line will be creating and declaring the location of
the next point along the path:

Vector3 nextLocation = navAgent.GetNextPathPosition();

This new variable, nextLocation , uses our NavigationAgent3D
variable, navAgent , and utilizes a function within the
NavigationAgent3D class called GetNextPathPosition . This function
makes sure that there are no objects in the path and must be housed
in the physics frame to update the path logic of the navigation agent.

Great, now we have both the current location and the next location
the NPC will move to. To make sure the movement is fluid, we’ll be
normalizing these two vectors to calculate the NPC’s new velocity.
The code will look like this:

To calculate the new velocity, we’re normalizing the current location
and the next location. After that, we multiply the normalized vector
by the speed we created and assign that result to newVelocity .

Vector3 newVelocity = (nextLocation – currLocation).Normalized() * sp

Even though we have calculated the new velocity, we need to assign
it to the velocity of our NPC. The node that the ForestDweller.cs script
extends from is CharacterBody3D, and within the CharacterBody3D
node class, there’s a variable called Velocity – that’s the one we need
to update. It will look like this:

this.Velocity = newVelocity;

The last line of code to add to our _PhysicsProcess function is a
function call to move the NPC:

MoveAndSlide();

Just like in our Player script, MoveAndSlide is called at the very end of
the _PhysicsProcess function after new velocities have been calculated.

Awesome! That wraps up the code needed for our _PhysicsProcess
function.

Now, we’ll create two more functions within the ForestDweller.cs
script and then we’ll be super close to testing out our NPC. On a new
line after the _PhysicsProcess function, declare a new function that
looks like this:

public void SetTarget(Vector3 targetPosition) { }

This new function, SetTarget , will take in a Vector3 and then pass that
Vector3 to the navigation agent, which will then pass it to the
navigation server.

Inside the function, we’ll write the following:

navAgent.TargetPosition = targetPosition;

This line takes our navAgent variable and uses a property that’s part
of the NavigationAgent3D class, TargetPosition , to update our NPC’s
path based on its current location. We set the TargetPosition property
to the targetPosition that we pass into the function as a parameter.

The last function we’ll be creating is one that will fire off when the
navigation agent emits one of its built-in signals. Let’s connect that
real quick before adding the code for the function. If we switch back
to Godot and open our ForestDweller.tscn scene, we have the
NavigationAgent node at the bo�om of the scene tree. Select the
navigation agent, then the Node tab at the top of the Inspector dock,
and you’ll see a list of built-in signals as part of the
NavigationAgent3D node. Double-click the target_reached() one
and under Receiver Method, name our function
OnNavAgentTargetReached , as shown in Figure 8.16:

Figure 8.16: Connecting a signal to target_reached for our NPC

Once we click Connect, we can return to the ForestDweller.cs script
and start writing our OnNavAgentTargetReached function. The function
declaration will look like this:

public async void OnNavAgentTargetReach() { }

Notice we have the word async in the declaration there. We’ll need it
since we’ll be using a timer inside the function to make the NPC wait
a few seconds before moving on to its next position.

The first line we’ll write inside this function is the following:

GD.Print("Position reached!");

This is more useful logging to ensure the order of our function calls
is correct and that our NPC is behaving correctly.

The next line will be the following:

var root = GetOwner<World>();

While there are any number of different methods for acquiring the
top of the scene tree, this will work fine for prototyping. GetOwner is a
function that will get the owner of the current scene, which here will
be the root node of the World scene. Another way is to utilize signals
again.

After se�ing our variable root to get the root node of the World
scene, we can call the function that we need to force the NPC to
choose its next patrol point. But before doing that, we’ll add a timer
to delay our NPC from choosing the next location in its list of path
options. This will create a Timer node in the code and add it to our
World scene. After its elapsed time (we’ll set it to three seconds), the
timer will be dereferenced, and the next line of code will execute. To
do this, we’ll write the following:

await ToSignal(GetTree().CreateTimer(3f), SceneTreeTimer.SignalName.T

This line is forcing our program to wait three seconds before
continuing. We want the delayed timer, because we want our NPC to
wait at its current position before moving on to the next one. It does
this by following these steps:

We use the await keyword to make our program wait until it
finishes executing the line of code after the word await before
moving on.
Then, we create a signal in code, using the ToSignal syntax. This
function takes two parameters:
The first argument in the call is the Timer we’re creating in the
scene tree where we set the duration to be three seconds.
The second argument is the signal that should be emi�ed, which
is the Timeout signal that’s built-in and part of the Timer node.
Next, we create a timer on the scene tree by using GetTree to
access the scene tree and use the CreateTimer function.

Now, after our NPC waits for three seconds, we want to call the
function in our World.cs script to start the process all over again by
choosing a new random patrol point. We’ll do this by writing the
following:

root.ChooseRandomPatrolPoint();

The variable, root , that we assigned to the World node in our scene
tree also has the World.cs file a�ached to it. This gives us access to the
public functions within it, such as ChooseRandomPatrolPoint .

With that, save this script and we’ll go back to the editor for the final
piece to programming our NPC, which is understanding how
groups work in Godot.

Creating groups in Godot
When working on a project, we tend to categorize objects by what
they do and how often they’re in a scene. While we have a way to
organize our project and keep our naming conventions the same,
sometimes having that extra tag on a set of objects is useful,
especially in code. The way we do that in Godot is by creating a
group.

A good example of groups would be NPCs. Say we have a group of
NPCs sca�ered about a woodland area. As time in the game
progresses, the NPCs would wander from point A to point B. We can
also pass in what those points are when we call on the group, which,
ideally, would be different points in the level for different NPCs. We
wouldn’t want two NPCs to overlap with each other.

Let’s create a group of NPCs and see how we can leverage this in our
project. Make sure our NPC is selected in the World scene, then look
at the Inspector dock. You will see three tabs across the top –
Inspector, Node, and History. We’ve used Inspector countless times
to access the properties of nodes and materials, but this time we’ll
click the Node tab.

By default, we see the Signals page, which has a list of functions we
can connect to, but here we want to click the word Groups (I know,
it doesn’t look like a bu�on), and the tab should switch to look
something like Figure 8.17:

Figure 8.17: Accessing the Groups tab in the editor

Under Manage Groups, type npc in the box, then click Add. We’ve
now created a group for our NPC. Doing this allows us to add
instances of our NPC object and keep them all together. Having
them be part of the same group means we can fire signals to all
NPCs at once without needing to iterate through each one
individually in code. Godot will do this automatically for us. An
object in any group will have a list of the groups they’re in. For now,
our NPC is in the npc group, and it will look like Figure 8.18:

Figure 8.18: Creating a new group called npc

You’ll also notice a new icon next to the NPC’s CharacterBody3D
node in the Scene dock. This icon, which looks like a square with a
dot inside it, as in Figure 8.19, indicates the node is part of a group.

Figure 8.19: The group icon in the Scene dock for our NPC

Cool, we created a group. OK, so now what? We’re going to create a
new function in World.cs .

The function declaration will look like this:

public void CreatePatrolPath() { }

Then, inside this function, we’re going to call the group we just
created, like this:

GetTree().CallGroup("npc", "SetTarget", patrolPoints[patrolNum]);

Here, we’re using a Godot function that’s part of groups, CallGroup ,
and this will fire logic to any member of that group based on what
we’re passing in. The CallGroup function can be broken down like
this:

npc : This is the name of the group that we’re calling on.

SetTarget : This is the function that we’re having every member
of the group call.
patrolPoints[patrolNum] : This is the value we’re passing into the
SetTarget function. Here, it would be the new point on the
NavMesh that we selected from ChooseRandomPatrolPoint .

With groups, if we had five wandering NPCs instead of one, it
would tell all five NPCs to fire the SetTarget function with the
specific patrolPoint that was passed in. When extending this beyond
one NPC, we want to add logic that didn’t choose the same point for
all five NPCs to move to (or maybe we would be depending on the
game). The point is that creating and maintaining groups is an easy
and flexible way to program logic for multiple entities that behave
similarly.

Now that we have this new function that calls on groups, we need to
call this function somewhere in our code. We’re going to place it in
the last line, after our while loop, of ChooseRandomPatrolPoint . This
means that once our NPC reaches its destination, it will choose a
new point to move to and then it’ll start to move toward that point
with CreatePatrolPath .

Lastly, we’ll call this function at the end of the PlayerStart() function
to ensure the NPC triggers after the player clicks the Play bu�on.

The full function should look like the following:

public void CreatePatrolPath()
{
 GD.Print("Setting new target position.");
 GetTree().CallGroup("npc", "SetTarget", patrolPoints[patrolNum]);
}

We’re ready to test out the scene and make sure everything is
working as intended. To see the path the NPC will be moving along,
we can set up some gizmos in Godot’s editor. Return to the
ForestDweller.tscn scene and select the NavigationAgent node. Look
at the Inspector dock on the right and scroll down until you see a
property called Debug. It should look something like Figure 8.20.

Figure 8.20: The Debug property on the NavigationAgent3D node

Make sure to check the Enable property. We’ll also set the path to a
custom color – I’ve chosen to use the color #CD0243 as it shows up
very well against the backdrop of the level. The last thing to change
is the size of the path points. I’ve set mine to 50 pixels, but you may
need to change yours as needed.

Now, when you save the scene and run the game, you should see
something like Figure 8.21 in the Viewport:

Figure 8.21: The Debug properties on the NPC in the Viewport

Notice the larger dots along the path. These are the path points, and
then the line is simply the path the NPC is taking from its old
position to the new one.

This kind of logic and setup provides many opportunities for
implementing different game mechanics. This could be added to
provide depth, via wandering NPCs. It could also be the basis for an
escort mission in a first-person shooter game. The possibilities are
endless and it is up to you, the game designer, on how best to
leverage these concepts.

Summary
In this chapter, we spent time learning what NavMeshes are and
how they function. We also discovered how to add a wandering
NPC to our game. We did this by creating a navigation agent and

adding it to our NPC. We then used marker nodes to create a path of
points on the NavMesh. After that, we programmed our NPC to
move between each of the marker nodes and wait there for a few
seconds before moving on to the next one. Lastly, we utilized some
gizmos for our navigation agent to confirm that the NPC is behaving
as we expected.

The next chapter will move on to an important part of our project –
lighting. We’ll look at the different types of lights available in Godot
and create spaces to utilize them in. We’ll highlight (pun intended)
the use case for each type of light in our project, specifically
directional lights (to create the sun) and omnilights (to light
interiors).

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

http://packtpub.com/unlock

————————— Part 3 —————————

Expanding Our 3D Action Game
and Additional Resources

In this part, we’ll dive into areas that aren’t required to have a
functioning project but add polish. These areas include lighting,
ways to incorporate accessibility measures, and seeking other
sources in the larger Godot community through Godot’s asset
library. We’ll explore how to report bugs in the Godot Engine to the
Godot Engine team and ways for you, as a developer, to contribute
to improving Godot. We’ll end the part by walking through the steps
to export our project to the itch.io platform and other supportive
communities to further your education about Godot. By the end of
this part, you will have a firm grasp on the process for exporting
projects, methods for flagging issues in Godot, and other resources
to further your own development through both communities and
third-party assets.

This part of the book includes the following chapters:

Chapter 9, Se�ing Up Lighting in Godot
Chapter 10, Understanding Accessibility and Additional Features
Chapter 11, Exporting Your Game
Chapter 12, Contributing to Godot and Additional Resources
Chapter 13, Next Steps as a Godot Developer

https://itch.io/

9

Setting Up Lighting in Godot

The previous chapter brought life to our game via pathfinding – this
is where we created dynamic movement by adding wandering NPCs
to our World scene and learned how to utilize both the
NavigationServer and NavigationAgent nodes in Godot.

In this chapter, we’ll discover how Godot uses lighting and explore
its lighting nodes. We’ll spend some time creating two different
types of lighting in our scene: directional and omnidirectional
(omni) lighting. Light, of course, cannot exist without darkness, so
we’ll be exploring some of the shadow (occluding) nodes that are
available in Godot. We’ll also create a day/night cycle for our World
scene to show the passage of time in our game.

Lighting is an important component when it comes to developing
games. It adds ambiance and sets the tone of a given space. It also
adds details and depth to the environment and is often incorporated
as a game mechanic. Whether by tracking sunlight through a
day/night cycle or using lighting for a stealth game, light adds
another dimension when it comes to game development.

In this chapter, we will cover the following topics:

Discovering Godot’s lighting nodes

Adding a DirectionalLight node
Utilizing OmniLight nodes
Creating a day/night cycle

Technical requirements
For this chapter, the technical requirements will be the same as those
in Chapter 1.

All the code for this chapter is available in this book’s GitHub
repository: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Discovering Godot’s lighting nodes
Before we dive into the different types of lighting nodes available in
Godot, I wanted to spend a li�le time breaking down how lighting
works in Godot. The options available for lighting will vary based on
the renderer selected for the project, but for our project, we are using
the Forward+ renderer. The Forward+ renderer essentially allows
machines with lower specifications to run your game.

Important note

For more information about Godot’s internal
rendering and how lighting is impacted by it, go to
https://docs.godotengine.org/en/stable/contr
ibuting/development/core_and_modules/interna
l_rendering_architecture.html.

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-
https://docs.godotengine.org/en/stable/engine_details/architecture/internal_rendering_architecture.html

The following light nodes are available in Godot. Light can appear in
a Godot scene in a variety of ways:

Materials: Any material with the emission property can
produce light.
Light nodes: The built-in nodes (DirectionalLight, OmniLight,
and SpotLight), all of which we’ll cover in detail later in this
section, have their own function in Godot. We’ll utilize
DirectionalLight nodes to add illumination to dark spaces in
our level, as well as for our day/night cycle. We can use the
OmniLight node for interior spaces; we’ll create a small room in
our test scene for this purpose. The last light, SpotLight, is used
for more concentrated types of light. While we won’t have an
example of it in our project, we’ll discuss it briefly.
Global and ambient light: We briefly worked with global and
ambient lighting when we created our World Environment
resource back in Chapter 5, when we created our Sky resource
and enabled signed distance field global illumination
(SDFGI).

Depending on the renderer selected, the number of lights that can be
in any given scene is limited. Since we’re using the Forward+
renderer, we can have up to 512. This is plenty for our scene, but for
larger projects, it may not be. This number can be changed in the
Project Se�ings area. However, if you are working in a different
renderer or targeting older hardware, there are be�er alternatives
that should be used, such as baked lightmaps. We’ll explain this in
greater detail later by creating one.

With a be�er understanding of how light can exist in Godot, let’s
look at the available lighting nodes. Figure 9.1 provides a list of all
the built-in nodes related to lighting.

Figure 9.1: The available light nodes in Godot

We won’t be using all the light nodes listed in Figure 9.1, but here are
the most frequently used light nodes available:

DirectionalLight: This is a light node that is used to project light
that’s from far away distances. A good example of this is using a

directional light for the sun in your game, something we’ll be
doing shortly.
OmniLight: This type of light emits in all directions based on a
radius and other built-in properties. It’s good for interior rooms,
lanterns, or streetlights.
SpotLight: These light nodes form a cone of light and are ideal
for things such as a player’s flashlight or car lights. They are like
OmniLight nodes in terms of their properties (range,
a�enuation, size), but that’s it.

Notice that these three nodes each derive from the Light3D node, as
shown in Figure 9.1, meaning they share several common properties
such as light, color, energy (intensity), and shadow se�ings. In this
chapter, we will cover an example that uses each of these types of
lights and explore their use cases. With this foundation in place, let’s
dive into how to implement each type in your scene, starting with
adding a DirectionalLight node and discussing how it changes the
scene.

Adding a DirectionalLight node
Now that we have a basic overview of the light nodes available in
Godot, we’re going to create a few examples highlighting how each
works in Godot. By doing this, you can decide which of the
examples you want to include in your project.

Let’s start by opening our World.tscn scene. Click the + sign at the top
of the Scene dock and type light in the search box. We’ll find the
same options that appeared in Figure 9.1. Select DirectionalLight3D
and click OK to add it to our Scene tree. Once you’ve done this, it

should be added to our scene. At this point, you will see the
properties for it in the Inspector dock, as shown in Figure 9.2:

Figure 9.2: The properties of a DirectionalLight3D node

The first property, Sky Mode, determines how the directional light
is rendered in the scene. There are three options for this property:

Light and Sky: When this mode is set, the light is visible in both
the scene lighting and the sky rendering
Light Only: When this mode is set, the light is only rendered in
the scene lighting
Sky Only: When this mode is set, the light is only visible in the
sky rendering

We’ll leave Sky Mode as-is with its default se�ing of Light and Sky.

The next property is Directional Shadow. Upon expanding it, you
should see Directional Shadow and its options, as shown in Figure
9.3. We’re going to leave everything at the default se�ings except for
Mode.

Figure 9.3: The Directional Shadow properties for a DirectionalLight3D node

The Mode property determines the algorithm used to render the
lighting. The default is PSSM 4, which stands for Parallel Split

Shadow Mapping. Here, 4 means the shadows are split into four
regions, and each region gets its own shadow map. You can read
more about this option here:
https://docs.godotengine.org/en/stable/tutorials/3d/lig
hts_and_shadows.html.

Before we adjust the Mode property, we’re going to jump down the
DirectionalLight3D list to the Shadow properties, shown in Figure
9.4. The first property in this list involves enabling shadows, which
you should go ahead and do.

Figure 9.4: The Shadow properties of the DirectionalLight3D node

Shadows should appear on all the objects in the World scene. You
can see them in the Viewport area. Position your view in the
Viewport area over a region that includes some trees to watch the
shadows change as we adjust the other properties of this light node.
I’ve positioned my camera so that I can see the trees, player, NPC,

https://docs.godotengine.org/en/stable/tutorials/3d/lights_and_shadows.html

and collectibles in the world. You can see what this looks like in
Figure 9.5:

Figure 9.5: Positioning our view in the Viewport area with Mode set to PSSM 4

Now, going back to the Mode property, let’s change it from the
default of PSSM 4 to PSSM 2. The shadows should now look
slightly blurrier. This is because, rather than using four regions for
shadow mapping, Godot will use two. While this uses fewer
resources and is faster, it will also look a bit fuzzier. Let’s change the
Mode property to Orthogonal and notice how they’re even blurrier.

The next set of properties for the DirectionalLight3D node can be
found under the Light heading, as shown in Figure 9.6.

Figure 9.6: The Light properties for a DirectionalLight3D node

Notice that the default color is white, which makes the lighting and
shadows very harsh. Let’s click into this and change it to a softer
yellow that’s more akin to the sun to create a more natural
environment. The hexadecimal color for this is #FFFFC4 . Once you set
the color of the light, there should be an immediate change in our
scene. We’ll learn more about this and how these lights look when
we create our day/night cycle later in this chapter.

You can play with the choice of color if it’s difficult to see the change.
You could go for something more orange-based to mimic a sunset, or
you could go for a stormy purple. This is one of the best things about
creating a game – you are ultimately the creator of it.

Playing around and testing things out to see or feel what is the best
fit for a mechanic, design, or anything else can lead to pleasant
surprises in development. So, don’t forget to have fun and play the
game too!

With the key properties of the DirectionalLight node explored, we
have a strong understanding of natural lighting and how it can be
set in our scene. Now, let’s explore OmniLight nodes.

Utilizing OmniLight nodes
With directional lighting in place for our outdoor scene and a
beautiful sun shining in our world, we can turn our a�ention to
OmniLight nodes. These nodes are be�er suited for interiors since
the light expands spherically.

Our World.tscn scene doesn’t have a great place to add an omni light
because there are no interior spaces. So, let’s open our TestArea.tscn
scene, the test environment we created back in Chapter 4, to
experiment with our player controller.

With the test scene open, let’s add some more CSGBox3D nodes to
make an enclosed room. As always, we can do that by clicking the +
icon and adding the CSGBox3D nodes manually, or by selecting our
floor and using Ctrl + D. Either way, we’ll be adding five of these
nodes to make three walls and a ceiling. The last one will be a wall
with an open entry. It should look something like Figure 9.7.

Figure 9.7: A CSGBox3D building for testing OmniLight nodes

Now, drag the Player.tscn scene from the filesystem into the Scene
dock, and position Player on the floor. If we run the scene now,
Player will fall through the floor, even though collision is enabled on
the CSGBox3D nodes. This is because the collision mask we set in
the World scene to collide with Player isn’t present here on these
CSGBox3D nodes. Those se�ings have persisted on Player, so we
need to update the collisions on the CSGBox3D nodes. Be sure to
select 3 for Collision Layer for each node, as shown in Figure 9.8.
The first layer will be selected by default, which is fine.

Figure 9.8: The collision layers for the CSGBox3D nodes

Go ahead and select the Play bu�on (the clapperboard icon). You can
see it highlighted in Figure 9.9. Since World.tscn is set to be the first
scene that will play, if you hit F5 or the Play bu�on, it will load the
wrong scene. Rather than changing this constantly in the Project
Se�ings area, we can use the clapperboard Play bu�on instead. This
bu�on means only the currently open scene, rather than the scene
that’s set to play in the project, will play. Using this bu�on allows us
to easily test new scenes without needing to change anything in
Project Se�ings.

Figure 9.9: The Play bu�on (clapperboard)

Test the scene out and run into the interior room. Notice that there’s
no lighting in our scene whatsoever. There’s no sky, no sun, or any
ambient light. So, click the + sign on the Scene dock and search for

an OmniLight3D node. Once the OmniLight3D node has been
added to the scene, position it inside the interior of the building we
created. After placing it, you can adjust the range of the light by
expanding it using the small white dot that’s on the edge of the
sphere. You can see this dot in Figure 9.10.

Figure 9.10: The OmniLight3D node highlighted in the Viewport area and placed in our building

In Figure 9.10, the light is very weak. With it selected and positioned
where we want, let’s look at the Inspector dock and examine some
of its properties. For the OmniLight3D node properties, we have the
following options:

Range: This is the radius of the light node. The light may not
cover the full radius, depending on how the A�enuation
property is set.
A�enuation: This is the brightness of the light node’s actual
light based on the distance set in the property.
Shadow Mode: This sets how shadows should be rendered.

As we’ve demonstrated, OmniLight nodes are an excellent option
for interior lighting. They can be used for specific, standalone
lighting, such as candles or street lamps.

Creating a day/night cycle
Now that we’ve looked at a couple of different examples of how
light nodes function in Godot, let’s pivot to creating a day/night
cycle in our World scene.

We’ll start by opening our World.tscn scene. Notice the
WorldEnvironment node in our Scene dock, as shown in Figure 9.11:

Figure 9.11: The WorldEnvironment node in the World.tscn scene

We created this in Chapter 5, when we were first se�ing up the
World scene for our player. Right-click the WorldEnvironment

node, click Add Child Node..., and look for DirectionalLight3D.
Once you’ve selected the DirectionalLight3D node, click Create.
Now, the Scene tree should look like Figure 9.12.

Note

Rather than adding a new DirectionalLight3D node,
you can drag the Sun node we created earlier in this
chapter and update its properties accordingly.

Figure 9.12: The DirectionalLight3D node added to the World.tscn scene

Once it’s been added to the scene, you will see white light appear on
one half of the World scene in the Viewport area, as shown on the
right-hand side of Figure 9.13. The left-hand side shows how the
World scene looked before the light was added.

Figure 9.13: The World scene with no DirectionalLight3D node (left) and one with it (right) in the
Viewport area

Note

For an easier time seeing the light and how it interacts
with the World scene, I’ve toggled off the rain. You
can do this by clicking the eyeball icon next to the
node we named Rain in the Scene dock.

Before augmenting the light’s properties, let’s rename this
DirectionalLight3D node to Sun. We can do this by double-clicking
the node or by right-clicking and selecting the Rename option. With
the node renamed, make sure it’s selected in the Scene dock, then
look at the Inspector dock for its list of properties.

The first property we’ll set is Position. This can be found under the
Transform heading. Once expanded, you can set it to the following:

x: 7 m
y: 26 m
z: 7 m

You can use Figure 9.14 as a reference for se�ing the Position
property.

Figure 9.14: Se�ing the Position property of the Sun node

Now that the Position property has been set, we can move on to
se�ing the other properties. Under the Shadow property heading,
we want to enable Shadows. This will add a nice bit of detail as we
move the light over the world. One more Shadow property we’ll set
is Blur. This blends the shadows into the World scene, making them
less sharp. We’ll set this property to 2 .

Our last property, and maybe one of the most important, is Color. A
white light is probably not the best color for our Sun node. Under
the Light property heading, we’ll find a property called Color.
Clicking into the white bar, we’ll see a color wheel appear that
provides multiple ways for se�ing the color. You can see this in
Figure 9.15:

Figure 9.15: Se�ing the Color property of our Sun node in the World scene

I’m going to set my Sun node to a soft yellow by se�ing the Hex
color to ffffC4 . Feel free to play around with how the color looks in
your World scene and toggle the Rain node on and off as needed. If
you’re still not sure about the color, don’t forget that volumetric fog
is enabled, and the light will look different with that turned off as
well.

With the Color property set, we still only see the color on one half of
the Viewport area. The Sun node should still be highlighted in the
Scene dock, since we’re adjusting its properties. This also means it’s
highlighted in the Viewport area, with each of the axes coming out
from the center of the node, as shown on the right-hand side of
Figure 9.16. By default, Select Mode is set in the Viewport area. We
can put the Viewport area in Rotate Mode by selecting it in the
Viewport tab, as shown in Figure 9.16, or by hi�ing E while in the
Viewport area:

Figure 9.16: Rotating the Sun node in the Viewport area

With the Sun node in Rotate Mode and selected, drag the X-axis (the
red curve) left or right. You’ll notice the light moves across our
World scene. Also, notice how the shadows change on the trees.
Instead of doing this by hand, we’ll be rotating the Sun node with an
AnimationPlayer node and then playing that animation in script.
Let’s go ahead and right-click the Sun node and click Add Child
Node.... We want to look for the AnimationPlayer node and click

Create. This will make our AnimationPlayer node a child of the Sun
node. Our scene tree should look like Figure 9.17:

Figure 9.17: The Scene tree of World.tscn after adding the AnimationPlayer node

Select the AnimationPlayer node from the Scene tree; the Animation
console should appear below the Viewport area. Inside the
Animation console, there will be an Animation bu�on. Click it and
select the New... option, as shown in Figure 9.18:

Figure 9.18: Creating a new animation for our Sun node

Once you click New..., a pop-up window called Create New
Animation will appear, asking you to name the new animation.
We’ll name it day_time and click OK, as shown in Figure 9.19:

Figure 9.19: The Create New Animation popup

After clicking OK, an animation track will appear inside the console,
below the Animation bu�on. Next to the Animation bu�on, the
chosen animation, day_time , will be selected. This should be familiar
since we did this with the imported model we used for our Player in
Chapter 4.

Now that we have a new animation and a track, we can add
properties to the animation. Click the + Add Track bu�on. A list of
properties we can add will appear, as shown in Figure 9.20:

Figure 9.20: Adding a property to the day_time animation

Go ahead and click Property Track.... A new pop-up window will
appear, listing all the nodes from our World scene tree. We want to

select the Sun node, since we’re animating it around the level. Go
ahead and click OK, as shown in Figure 9.21:

Figure 9.21: Choosing a node to animate

Immediately after selecting OK, the pop-up will change to a list of
every property for the Sun node (see Figure 9.22). We want to find
the Rotation property and select Open:

Figure 9.22: Selecting a property on the Sun node to animate

Clicking Open adds the Rotation property of the Sun node to the
Animation console, below the Viewport area. Make sure the Editor
area has the following set for each of its docks:

1. The Sun node is selected in the Scene tree.
2. The Inspector tab is selected.
3. The Animation console is open.

Now that our Editor area has been set up correctly, we can add the
keyframes. Within the Animation console, set the length of the
animation by typing 12 in the box next to the stopwatch icon, as
shown in Figure 9.23. This will be the length of our in-game day. We
also want to click the blue looping icon to the right of the
animation’s length.

Figure 9.23: Se�ing the animation’s length

Once the duration and looping have been set, look at the Inspector
dock and go to the Rotation property for the Sun node. Set the X-
axis to -90 degrees and then click the key icon that’s next to the name
of the property, as shown in Figure 9.24:

Figure 9.24: Adding a keyframe based on the Rotation property of the Sun node

Clicking the key will add a li�le diamond to the animation track.
This is shown in Figure 9.25. This is the rotation the Sun node will
start at when the animation begins.

Figure 9.25: The keyframe added at the start of the day_time animation

Now, let’s set the final keyframe of the day_time animation by going
to the end of the animation. We can do this by typing 12 into the box
above the animation track, as shown in Figure 9.26. This will move
the animation track’s blue bar to the end of the animation.

Note

There should be a blue bar on the animation track. It
should be at the start of the animation, but I have
moved it along the track to make the keyframe more
visible in Figure 9.26. You can click and drag the blue
bar throughout the animation to see how it will look
in the Viewport area. It can also be useful for se�ing
keyframes.

Figure 9.26: Seeking the end of the animation to set a keyframe

Back in the Inspector dock, let’s set the Sun node’s rotation to 270
degrees and then click the key icon again. A second diamond will
appear on the animation track, as shown in Figure 9.26. We can now
click the Player bu�on in the Animation console (again, shown in
Figure 9.26) to see the animation run.

There’s one more step we need to take to complete our animation,
and that’s triggering the animation so that it starts in the script once
the player clicks the Play bu�on from our main menu. Let’s go
ahead and do that now by opening our World.cs script.

At the top of our World.cs script, where we declare our variables,
we’re going to create a new variable and write the following:

[Export] public AnimationPlayer sun;

The [Export] a�ribute creates a property in the Editor area, so we can
drag and drop our AnimationPlayer node from the scene tree into
the Inspector dock. This is a convenient way to access nodes and
their properties without using the GetNode syntax that we have been
using in the _Ready() functions of our script. Another reason it’s
convenient is that we don’t have to rely on the node’s path in the
Scene tree. Rather, we can drag and drop the node and have direct
access.

Go ahead and save the World.cs script, go back to the Editor area, and
rebuild the project. You can do this by clicking the hammer icon next
to the Play bu�on, as shown in Figure 9.27:

Figure 9.27: The build bu�on in the top-right corner of the Editor area

Note

You must rebuild the C# project each time you export
variables to update the Inspector dock. For a full list
of possible properties you can export, go to
https://docs.godotengine.org/en/stable/tutor
ials/scripting/c_sharp/c_sharp_exports.html.

https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/c_sharp_exports.html

Once the project has been rebuilt, you can drag the AnimationPlayer
node from the Scene tree directly into the Inspector dock, as shown
in Figure 9.28:

Figure 9.28: Adding the AnimationPlayer node to an exported property

We now have access to the AnimationPlayer node and can reference
it in the script. Back inside our World.cs script, we’ll find the
PlayerStart() function we created in a previous chapter and trigger
our sun animation so that it plays. We want it in the PlayerStart()
function because we only want daytime to start after the player
clicks the Play bu�on on our main menu. So, write the following
inside PlayerStart() :

sun.play();

And that’s it! If we save our game and run it, we can test this by
clicking the Play bu�on, after which we can watch the light change
over the World scene in the span of a few seconds. This can be seen
in Figure 9.29.

Figure 9.29: The sun rotating in the World scene

Keep in mind that this is a very simple day cycle and can be
expanded upon in a bunch of different ways. Rather than relying on
the AnimationPlayer node to specify the length of our day, we could
script it in our World.cs script and have an exported variable for the
length to figure out what feels best for the game and our player.
Another thing we could do is add another DirectionalLight3D node
that’s much softer and would only appear once the Sun node had
“set,” figuratively speaking, and simulate the idea of having a moon.
Or, if it’s a fantasy world, you could have more than one moon! The
ideas are endless, but this was a jumping-off point to help you
discover how directional lighting can be utilized in your project.

Summary
In this chapter, we learned how lighting works in Godot and how
best to leverage it for our project. We discovered the various lighting
nodes available to us and used the directional, omni, and point

nodes. We also briefly discussed baking lightmaps and the benefits
of doing so. With our newfound knowledge, we created a day/night
cycle for our game while providing examples of interior lighting.
The importance of lighting cannot be overstated. It adds the depth
and realism that some games, such as colony simulator or survival
games, need, and can even be included when it comes to designing
the core gameplay.

In the next chapter, we’ll consider accessibility in games and update
and test all the pieces we’ve created so far. This will include tasks
such as expanding our UI in-game, creating tweens, and making
other small adjustments to enhance our game so that we can dive a
li�le deeper into a variety of areas.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

http://packtpub.com/unlock

10

Understanding Accessibility and
Additional Features

So far in this book, we’ve covered a variety of components within
Godot and C#. We’ve created a player controller, programmed
animations, and added different controls for our player. We’ve
created a level that feels dynamic and lived in through particle
effects, an item spawner, shaders, lighting, and NPC wandering. To
bring it all together, we created some basic UI and added music and
sound effects to give feedback and ambiance to our player. Take a
moment to celebrate ge�ing here and be proud of what you have
created! I hope you’ve learned enough about Godot and using C# to
extend this project and create your own.

However, while we have completed the basics of our project, there
are still some important steps to take that this chapter will cover.
This chapter is all about cleaning up and improving our project.

First, we’ll look at understanding accessibility in video games. This is
an extremely important topic that should not be overlooked, as the
consideration and inclusion of different types of players is inviting
and shows a level of inclusion and polish. While we won’t make our
game accessible in every way possible, as it’s different for each

game, we’ll implement a couple of ways to make our game accessible
in motor and visual ways.

Lastly, we’ll discover different ways to save and load data in Godot,
discussing the benefits and drawbacks of each.

Our goals for this chapter are the following:

Understanding accessibility
Discovering Save systems
Adding additional features

Technical requirements
For this chapter, the technical requirements will be the same as
Chapter 1.

All the code from this chapter will be available in the GitHub
repository here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Understanding accessibility
Accessibility is a critical component of game development as it
allows more people to play your game. While it hasn’t always been
at the forefront of development, it’s rapidly ge�ing there. With more
and more game studios incorporating a wide array of accessible
options and game jams such as Global Game Jam and the Godot
Wild Jam, which encourage inclusive design, accessibility is a
requirement for any aspiring or active game developer. In this

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-

section, we’ll spend some time discussing ways to make our current
project a li�le bit more accessible.

It can be difficult to provide concrete rules when it comes to
accessibility, because there are a multitude of ways that a game
could be inaccessible to different types of folks, whether it’s related
to visual, motor, or cognitive abilities. It also depends heavily on the
type of game you’re creating, such as a bullet-hell game that requires
a lot of dexterity or a visual novel where the options on the font and
text displayed in-game ma�er, but there are a handful of common
implementations that can be implemented in a project, no ma�er the
type of game you’re creating, as follows:

Colorblind se�ings: This is a filter that is applied to your UI
and game world that allows anyone with any type of
colorblindness to still experience your game in a way that is
comfortable and accessible to them. A great tool for
incorporating this option in your game can be found here,
thanks to user Paulloz: https://github.com/paulloz/godot-
colorblindness.
Rebindable keys: Allowing players to rebind keys is a quick
and easy way to give players agency in how they play your
game. Rather than keeping them to one control scheme, you can
give the player agency over what controls work best for them.
Subtitles: It’s important to provide both a visual and auditory
way of engaging with a game and its story. Subtitles should not
only be included by default, but the user should also be able to
customize their size and color, particularly for those who are
colorblind. Lastly, an optional textbox for the text to sit on

https://github.com/paulloz/godot-colorblindness

makes the text contrast against the environment for easier
reading.
Scalable UI: As mentioned, when discussing bullet points,
scalable UI is an important addition to making your game
accessible. The option for adjusting the sizing of a UI
component or HUD screen is important. With so many devices
in the world, it’s proactive to provide this type of customization
to the player, so they can create an enjoyable way for them to
interface with your game.

While this is by no means a comprehensive list for providing
accessibility to your game, this is a solid foundation to start. For
more information about including accessibility measures in your
game, you can check out Can I Play That?
(https://caniplaythat.com/). You can also explore the Game
Accessibility Guidelines website, which has multiple tiers and is
broken down by category in various ways to make sure your game
can be played by everyone:
https://gameaccessibilityguidelines.com/

Note

As of this writing, the Godot 4 Editor is not readable
for OS screen readers. However, there is an open issue
on the Engine’s GitHub page for this problem, which
you can find here:
https://github.com/godotengine/godot/pull/76
829.

https://caniplaythat.com/
https://gameaccessibilityguidelines.com/
https://github.com/godotengine/godot/pull/76829

With a brief overview of ways to make games accessible, let’s look at
how we can implement one of those ways. We’re going to choose
rebindable keys.

Revamping our Settings UI
Providing the option to rebind any controls is always a sure sign of a
thoughtful and polished game. It gives players the opportunity to
play the game in the way they want. We’ll create the ability to rebind
controls for our project by adding a page to our UI through the
Se�ings menu first.

Right now, our Se�ings screen only has the Music and SFX sliders
on it. We’ll be revamping this page to have tabs along the top for
Controls and Audio, as most se�ings pages do. It’s a significant
overhaul, but it will make the scene much cleaner and far more
expandable in the long run. Let’s go ahead and get started by
opening our Settings.tscn screen.

With our Settings.tscn scene open, click the + sign at the top of the
scene dock and search for a TabBar node. As mentioned, we’re going
to create two tabs: Audio and Controls. Then, we’ll have these tabs
run across the top of our Se�ings page. Make TabBar a child of
ColorRect, as shown in Figure 10.1, by dragging the TabBar node
underneath the ColorRect node. Let’s see what that looks like here:

Figure 10.1: Placing the TabBar node in our scene tree

Now select the TabBar node and look at the Inspector dock to see its
properties available. The first one is called Tabs. Here, we can create
the tabs we’ll have. Click the Add Element bu�on, and a new box of
sub-properties will appear, as shown in Figure 10.2:

Figure 10.2: Creating tabs in the TabBar node

These sub-properties correlate to each of the tabs. For Title, type
Audio . We won’t use the Icon property here, as text is enough. We
will also leave the Disabled property unchecked. The Disabled
property means the tab is not interactable, but we want both tabs in
TabBar to be accessible from the start of the game.

Repeat this process once more, naming the new tab Controls instead.

Note

The up arrow and hamburger menu on the left-hand
side of Figure 10.2 allow for quickly rearranging the
order of tabs without needing to re-create them.

With our new nodes added, we can begin customizing the TabBar
node. As a new node, the TabBar node was added to the scene at the
origin and is very tiny. Let’s resize and position it to where we’d like

it. Under the TabBar properties, find the Transform property and
use these values:

Size: x: 399, y: 85
Position: x: 90, y: 55

Great! If you used the same values as me, the TabBar node should be
si�ing on top of the ColorRect node towards the top-left of the scene
with plenty of room on each side.

Next, we’ll quickly change the style of the tabs using our Theme
resource once more. Click the root node of our Settings.tscn scene
from the scene dock, labeled Se�ings. The Theme Editor should
pop-up below the Viewport. With this open, we can create a new
theme type by clicking the + sign next to the currently selected theme
type, as shown in Figure 10.3:

Figure 10.3: The theme type menu within the Theme Editor

A new pop-up will appear, asking what Control node we want to
have a new theme type for. Search for TabBar and find it in the list of
nodes, then click Add Type. Once added, be sure it’s the selected
type in the Type dropdown, as shown in Figure 10.4:

Figure 10.4: The TabBar theme type selected

Now we’ll briefly style it so that it matches our page. We’ll move
through the property tabs from left to right, as we did with previous
theme types, such as our bu�ons. You can see the property tabs in
Figure 10.4 as well.

We’ll start with the left-most one, which relates to the color of the
font. Once that tab is selected, notice how the listed properties are
grayed out. We’re going to change all but one of these, so click the
Override All bu�on above the property tabs, as shown in both
Figure 10.3 and Figure 10.4.

After that, every property listed should change from gray to white
and have two icons to the right – a pencil and a trash can. We’ll now
change the colors to match what’s shown in Figure 10.5:

Figure 10.5: The font colors for various font states

To do so, click on each color box, and you should see a Hex box,
along with a place to set the Alpha value (the box to the right of the
up and down arrows), as in Figure 10.6:

Figure 10.6: Se�ing the Alpha and Hex color for font_disabled_color

So, to make sure the font colors match Figure 10.5, click each color
property and enter these values:

font_disabled_color : Hex: 000000, Alpha: 168
font_hovered_color : Hex: 000000, Alpha: 255
font_outline_color : Hex: FFFFFF, Alpha: 255
font_selected_color : Hex: 000000, Alpha: 255
font_unselected_color : Hex: 484848, Alpha: 198

As we make these changes, we should start to see the TabBar node
change, since it inherits our theme resource from the Se�ings node.

Next, we’ll move on to the fourth tab (see Figure 10.4), which only
has the font_size property listed. Click the + sign next to the font_size
property and set it to 40.

The final property tab to adjust is our StyleBoxes. These can be
found in the sixth tab from the left in Figure 10.4. It also has a
rainbow icon with a droplet in the bo�om-right corner of it. If we
scroll down, we’ll see the tab properties as shown in Figure 10.7:

Figure 10.7: The StyleBoxes we’re creating for TabBar

We’ll be creating StyleBoxes (either flat boxes or lines) based on the
state the tab is in (e.g., hover, selected, and so on). To do so, follow
these instructions:

1. Click the + sign next to the tab_focus property.
2. Open the <empty> dropdown and select StyleBoxFlat. The

selected StyleBoxFlat will be highlighted as shown in Figure
10.8:

Figure 10.8: Selecting StyleBoxFlat for tab_focus

3. Next, click StyleBoxFlat and the Inspector dock will change to
show a list of properties for StyleBoxFlat. All we’re going to
change here is to set Alpha for BG Color to be 0 (leaving it at its
default gives us some unwanted behavior). Now, let’s repeat
steps 1-3 for tab_hovered . Once we’re inside the StyleBoxFlat
properties, change the following options:
BG Color: Set the color to #E86A17 and Alpha to 68.
Corner Detail: Set this to 8 pixels.
Border Width: Set Top to 12 pixels.

Border: Make sure Blend is enabled, and Color is set to
#CCCCCC.
Corner Radius: Set Bo�om Right and Bo�om Left to 7 pixels
each.
Expand Margins: Set Bo�om to 5 pixels.
Content Margins: Set Left and Right to 5 pixels, Top to 6 pixels,
and Bo�om to -1.

Note

We are moving quickly through these properties with
li�le explanation, as we thoroughly covered them in
Chapter 6, so if you’re unsure of how a property
behaves, review that chapter, which is all about UI
and working with the theme editor.

Once more, repeat steps 1-3 for tab_selected . We’re going to move
through the same properties with minor tweaks to what they are.
We’ll step through each of these properties for all the tabs, so they
match and have cohesion throughout all states of the tabs. Unless
noted, the properties should match those of tab_hovered .

BG Color: Set the color to #7B7B7B and Alpha to 109.
Border: Make sure Blend is enabled, and Color is set to
#E86A17.
Expanded Margins: Set Left and Right to 5 pixels and Bo�om
to 3 pixels.
Content Margins: Set Left, Top, and Right to 6 pixels while
Bo�om is set to -1.

The final tab property we’re going to augment is the tab_unselected
one. Repeat steps 1-3 as we have been, but this time, instead of
StyleBoxFlat, select StyleBoxLine. Then, in the Inspector dock, we’ll
change the following properties:

Color: The color will be black, which is #000000, and Alpha will
be 255.
Grow End: Set to 5 pixels.
Thickness: Set to 5 pixels.
Content Margins: Set all to 12 pixels.

Now our TabBar node in the Se�ings scene should look like Figure
10.9:

Figure 10.9: TabBar styled and in our Se�ings scene

Excellent! Now that the styling of our tabs is complete, let’s look at
rearranging the Se�ings scene tree to toggle between the tabs.

Updating our Settings scene
When rearranging the scene tree, we’ll use Figure 10.10 and reference
it as needed:

Figure 10.10: The scene tree structure for our Se�ings screen

We’ve already added the TabBar node to be a child of ColorRect.
Now we’re going to add two additional panels – one for the Audio
page and the other for Controls. Click the + sign above the scene
tree, search for Panel, and name it AudioPanel . Repeat this process
and name the panel ControlsPanel . Then make them children of

CanvasLayer by dragging them under CanvasLayer, as shown in
Figure 10.10.

Now, let’s position the two newly created panels, and then we’ll
reparent the correct nodes under each. The Position and Size
properties of each panel will be the same and are as follows:

Size: x: 1053 px, y: 482 px
Position: x: 55 px, y: 133 px

Now, the panels will have a semi-transparent black background
because we’ve added the Panel node as a theme type to the theme
editor. Remember, we styled the panel for our main menu. Here,
we’re going to override the theme resource, so we can have a clear
background on these panels only.

Before we can do that, however, we need to add our theme resource
to the panel. Select AudioPanel and in the Inspector, find the Theme
property. Expand it and let’s load our UI_Theme.tres resource.

Next, expand the Theme Overrides property, and you should see
another property called Styles. Check the Panel box under Styles
and then load StyleBoxEmpty to override what we designed for the
UI_Theme.tres resource. The option will look like Figure 10.11 in the
Inspector dock.

Figure 10.11: Overriding the Panel style in AudioPanel

Repeat the step of adding the theme resource for ControlsPanel in
overriding the theme and adding the UI_Theme.tres resource. We want
to select the AudioPanel node in the scene tree, view the Inspector,
and then find the Theme Overrides property, as shown in Figure
10.11. We’ll make sure the panel is enabled and then load
StyleBoxEmpty. Again, we want to override the existing theme
resource with a different design for the background of both the
audio and control panels.

Once our theme resource is overridden, we’ll also want to click the
eyeball icon next to ControlsPanel in the scene dock, as we want it
hidden on start and will only make it visible when the player clicks
the Controls tab. Later in this chapter, we’ll toggle the correct panel
on and off based on clicking the right tab. For now, we want it
hidden. Lastly, be sure to parent MusicSlider, MusicLabel,
SFXSlider, and SFXLabel underneath AudioPanel.

For ControlsPanel, create VBoxContainer and then create six Bu�on
nodes. Name each Bu�on node Left, Right, Up, Down, Jump, and
Run, respectively. Again, you can see the scene tree in Figure 10.10 if
you’re unsure what type of node needs to be added and how it’s
parented in the scene tree.

We’ll also delete the Title label node we created previously that said
Se�ings in the top middle of the screen. Our Se�ings screen should
now look like Figure 10.12:

Figure 10.12: The Se�ings screen revamped

Awesome! Our Se�ings screen is looking polished now. Next, we’re
going to add a function to the Settings.cs file to alternate between
the Audio and Controls tabs.

Programming our tabs
Adding functionality to our tabs is the last step before ge�ing into
rebinding our keys. Let’s go ahead and select the TabBar node in the
scene tree. Then, in the Inspector dock, we’ll click the Node tab at
the top. We’re going to create a signal and add the function for it in
our Settings.cs file. The built-in signal we’re using is the
tab_selected(tab: int) one. Find the tab_selected(tab:int) signal in the
list of signals. Once highlighted, the Connect… bu�on at the bo�om
of the list will be clickable, as shown in Figure 10.13:

Figure 10.13: The Connect… bu�on at the bo�om of the signal list

After clicking Connect…, a new pop-up will appear, as shown in
Figure 10.14. Remember, the signal function must be tied to an
existing script. In this case, our signal will be tied to the Settings.cs
script.

Figure 10.14: The pop-up window for adding a signal

Underneath the Receiver Method box, we’ll change the auto-
generated function name to TabChanged , as shown in Figure 10.14.
Then, we’ll click the Connect bu�on. The pop-up will disappear, and

we can see the function added in green text under the signal name,
as shown in Figure 10.15:

Note

Notice the yellow text that states the callback code
won’t be generated and must be added manually. This
means, as we’ve been doing, that a new function won’t
be created automatically in the script we’re a�aching
the signal to. However, if we add the function call
with the same name and parameters, it will be called
correctly.

Figure 10.15: The list of signals on the TabBar node

With the signal created and connected to a function, let’s create the
function inside our Settings.cs script to finalize this functionality. To
do this, we’ll open the Settings.cs script and scroll to the bo�om of
the class. We want to create a new function that matches what we
put in the Receiver Method box when connecting the signal. This
means we will write the following:

private void TabChanged(int tab) {}

The function will take in a single parameter called tab , and this will
determine which set of control nodes to show or hide. Within the
function, let’s create a switch/case statement to toggle the right
control nodes on and off. We’ll write the following:

switch (tab) {
 case 0:
 break;
 case 1:
 break;
}

We’ll only have two cases, because we’ll either be on the Audio tab
or the Controls one. Let’s go ahead and set the first case with the 0 to
show the Audio tab, and the second case with the 1 to show the
Controls tab.

Within the case 0 and before the line that says break , let’s write the
following code:

audioMenu.visible = true;
controlsMenu.visible = false;

The audioMenu and controlsMenu variables have a reference to the Panel
nodes in our scene tree, and since all of their children have the
information for each tab, we can simply hide one or the other.
Remember that, by default, the state of the parent node will impact
the state of all its children unless otherwise marked in the node.

Discovering Save systems
While there is not much to save in the way of data in our game, we’ll
briefly discuss how you can save data and the use cases for each.
We’ll be looking at the following ways to save data:

Using JSON files
Binary serialization
Config files

Saving with JSON
The first one we’ll discuss is using JSON files. JSON stands for
JavaScript Object Notation. JSON files are forma�ed into human-
readable text. If we wanted to create and save data about the player
in a JSON file, it might look like the following:

{
 "player_name": "Kati",
 "mushrooms_collected": {
 "blue": 1,
 "red": 3
 }
}

In this example, we have two types of data being saved, which are
player_name and mushrooms_collected . We can be more specific in the
kinds of data we’re seeking by nesting the JSON name-value pair
and marking whether a mushroom we collected is blue or red.

Note

When exporting your project, which we’ll discuss in
the next chapter, it’s important to mark JSON files, so
they aren’t exported as if they were a resource, scene,
and so on.

While JSON files are easy to read, they can become quite
cumbersome when there is a lot of data. They are also not
necessarily the safest format to use. However, it’s a perfect solution
when it comes to creating game jam games or even working on a
game with limited player data. For more information about JSON
and how to use it in Godot, you can read about it here:
https://docs.godotengine.org/en/stable/classes/class_js
on.html#class-json.

Let’s look at some other ways we can save player data, such as
through binary serialization.

Saving with binary serialization
Binary serialization is a way to take existing data and convert it to an
array of bytes (that is made up of binary) for saving. Godot has a
built-in API for doing this based on the Variant data type. The
biggest reason to use binary serialization is how much space it saves,
since it’s machine-readable only. It’s also a big downside, because
you can’t easily read it like when saving with JSON. Godot provides
functions for converting the saved data and provides how much
space each data type takes up when converted. You can read more
about that here:

https://docs.godotengine.org/en/stable/classes/class_json.html#class-json

https://docs.godotengine.org/en/stable/tutorials/io/bin
ary_serialization_api.html.

Saving with ConfigFile
The final way to save data that we’ll discuss is by using ConfigFile .
With this, we write specific data to a new ConfigFile object and use
the ConfigFile 's save() function when updating the data. ConfigFile is
a great blend of the JSON and binary serialization methods for two
reasons. The first reason is that it’s human-readable, but it’s also
serializable. This means it won’t take up as much space on the disk.
It can also be encrypted, providing some security. You can find more
information on creating and using a ConfigFile here:
https://docs.godotengine.org/en/stable/classes/class_co
nfigfile.html.

Adding additional features
In this section, we’re going to add some small quality-of-life
improvements to our game in two specific areas. Both will be
implemented in a script, but will have a wide array of impacts on the
project, depending on how you want to further develop it. The list of
features is as follows:

Discovering and using tweens
Switching scenes

Let’s start by discussing what tweens are and how to use them.

https://docs.godotengine.org/en/stable/tutorials/io/binary_serialization_api.html
https://docs.godotengine.org/en/stable/classes/class_configfile.html

Using tweens
Tweens are a convenient way to animate objects in Godot, especially
when you don’t know the expected value of the object. They allow
us to interpolate an object between two points. We’ll be using tweens
to make our collectible mushrooms randomly rotate on either the X,
Y, or Z axis. They are more lightweight than AnimationPlayer and are
great when wanting some light animation or juice to add to an object
or UI.

To do this, let’s go ahead and open the Collectible.cs file. We’ll be
adding a tween object to the collectible and then augmenting tween
properties to get a random set of rotations on the collectible. Adding
a tween object requires one line of code and will be above the
_Ready() function.

private Tween _itemTween;

Here, we’ve only declared a tween variable, but still need to create it
and a�ach a tween object. After that, we can start to access the tween
properties within the class, using our _itemTween object.

Note

A good guideline when using tweens is not to use
more than one tween to modify the same property of
an object, which is why it is good to assign a tween to
a variable and track it.

Inside our _Ready() function, we’ll create the tween and assign it to
our _itemTween variable by writing the following line of code.

_itemTween = CreateTween().SetLoops();

The CreateTween() function creates a tween for us, and we
immediately call SetLoops() . SetLoops() with no arguments passed
into the function will ensure the tween runs infinitely. Now our
tween has been created and assigned to our variable. Next, let’s
access the tween properties and have our collectible rotate around
the X axis. Right below the line we just wrote, we’ll write the
following:

Here, we’re calling a tween function called TweenProperty() , which
creates PropertyTweener and passes four arguments into the function.
Let’s break down each of these arguments:

this : The object we want to be tweened, which is the collectible,
so we self-reference it by typing this
"position:y" : This is the property on the object we want to tween,
and we provide a string to the property’s path in quotes
.25f : This is the final value the tween will modify the property
over the duration. A second, initial value can be listed to keep
the change bound, but we did not do that here.
1f : This is the duration of the tween in seconds.

_itemTween.TweenProperty(this, "position:y", .25f, 1f).AsRelative();

Once the arguments are passed to the created PropertyTweener , we call
one final function, named AsRelative() . This takes the final value and
will be used as a relative value instead.

Now let’s rotate the collectible on the X axis by choosing a degree to
rotate at random. Again, we’ll use tweens for this by doing the
following:

We’re calling TweenProperty() to access the tween properties within,
and the arguments are as follows:

this : The object we want to tween, the collectible
"rotation:x" The property we’re tweening, which is the rotation
of the collectible on the X axis
ChooseRandomDegree() : This is a function we’ll create that returns a
float to select a degree at random for our X axis to rotate on
1f : This is the duration of the tween in seconds

Lastly, we have the AsRelative() function again, to ensure the values
are relative to our collectible object.

The last line of code we need is to add a small pause before the
tween loops through and starts again. This line will look like the
following:

_itemTween.TweenInterval(.5f);

_itemTween.TweenProperty(this, "rotation:x", ChooseRandomDegree(), 1f

The TweenInterval function creates a delay based on the float passed
into it. Here, we’re delaying the tween animation by half a second,
and then it will start the tween over again, since we have SetLoops()
to be true.

With our tween created and properties augmented, we need to also
create the function we referenced in those lines of preceding code,
ChooseRandomDegree() . We can do that inside the Collectible.cs script,
since we’re only calling that function in relation to the tween and its
properties, which also live in Collectible.cs . At the top of the file, we
need to add the Random class that’s in the System library of C#. At the
top of the Collectible.cs script, we’ll write the following under the
using Godot; line:

using System;

Next, we’ll write the following:

public float ChooseRandomDegree()
{
 Random rDegree = new();
 float randomDegree = rDegree.Next(0, 30);
 return randomDegree;
}

The declaration of the public float ChooseRandomDegree() function
returns a float. Then, the first line inside the function creates a
random object, called rDegree . After that, we create a float variable,
randomDegree , and use the Next() function from the Random class to
generate a number between 0 and 30 and assign it to randomDegree .
This is the value we return at the end of the function.

Save the script, and let’s go back to Godot to test out our tween. If
we hit play, we should see the collectible floating in the air and
rotating around the world.

Note

If you don’t have a collectible item in your World
scene, you can drag the .tscn file from the File dock
and into the World scene.

With tweens covered and implemented, let’s move on to the last
feature in this chapter, switching scenes. It’s a common feature and
necessary when it comes to keeping scenes contained, clean, and
usable.

Switching scenes
Switching scenes is easy and encouraged in Godot. Having every
piece of your game in one scene would quickly become too much to
manage. We’ve already been using multiple scenes and having them
loaded into scenes as objects. With that, there are a couple of
different ways to switch scenes in Godot. Either way, we’ll
instantiate a new scene in our current scene, but after that, we’ll have
two options for how to handle our old scene root. They are the
following:

Option 1: Additively instantiate another scene on top of the
current one
Option 2: Manually remove the old root scene and switch to the
new scene

Let’s start with the first option and bind a key to instantiate and add
a new scene on top of our existing one. We’ve already been doing
this with scenes such as our player controller and our collectible
item. This time, we’ll do it with the test area scene we used in the
lighting chapter. To start, let’s open the World.cs file.

At the top of the script, where the variables are, let’s add the
following:

public node testScene;

This variable will hold the new scene we’re loading in. Next, in the
_PhysicsProcess function, let’s create an if statement to change our
scene based on keyboard input. We’ll add the following lines of
code:

if(Input.IsActionJustPressed("SwitchScene")) { }

Inside this if statement, let’s assign our variable to the ResourceLoader
class and call its load function with the following:

Here, we take our variable and assign a packed scene, test_area.tscn ,
to testScene . At the end of this line of code, we call the Instantiate
function, which is what adds test_area.tscn to the scene tree. Next,
we’ll write this:

GetTree().Root.AddChild(testScene);

testScene = ResourceLoader.Load<PackedScene> ("res://test_area.tscn")

This line finds the root of our current scene tree and adds the
instantiated scene as a child. The last thing we need to do is bind a
key to the input SwitchScene . Go to Project Se�ings in the top-left
corner, add a new action called SwitchScene , and then click the small
plus sign icon next to the new action. A new window will appear,
asking you for input. Hit a key that has not been assigned, such as
the number 1, as shown in Figure 10.16:

Figure 10.16: Binding key inputs for switching scenes in project se�ings

Now, run the game and click the Play bu�on from the main menu.
Once on the main level of the game, hit the number 1 key on your
keyboard, or whatever key you’ve bound the SwitchScene input to,
and you should see test_area.tscn added to the level. Notice how it
sits on top of the World.tscn scene, because our root scene is still
there. Sometimes this is useful, but in this instance, with levels, it’s
not quite as convenient as it was when we added our player or
collectible. Let’s consider a different way.

Before we start the second option, let’s go ahead and create the new
keybind for it, since we were just inside Project Se�ings. Go ahead
and type, in the Add New Action space, the words SwitchSceneTwo ,
and bind it to something such as number 2, as shown in Figure 10.16.

Back in our World.cs file, let’s add another If statement inside the
_PhysicsProcess function. The If statement will start with the
following:

If(Input.IsActionJustPressed("SwitchSceneTwo") { }

Here, we’re tying the player input to the new keybind we did for
SwitchSceneTwo . Next, we’ll add this line:

GetTree().ChangeSceneToFile("res://test_area.tscn");

This line calls the scene tree and then utilizes a built-in function in
the GetTree object called ChangeSceneToFile . Save the file and go ahead
and test it out by running the game and selecting the number 2.
Immediately, the level scene is gone, the music stops, and the
lighting is much darker. This is because the new root of the scene is
test_area.tscn , and all the nodes from World.tscn have been removed.
The built-in ChangeSceneToFile function ensures that both scenes aren’t
running at the same time, but be warned that any data from
World.tscn we may have wanted to access is no longer accessible
now.

For more information on the pros and cons of each option we
discussed, you can read more about them here:

https://docs.godotengine.org/en/stable/tutorials/script
ing/change_scenes_manually.html.

We’ve now covered a couple of different ways to change scenes in
Godot to be�er equip you for managing resources and memory
when it comes to adding and changing scenes.

Summary
This chapter highlighted how many different types of resources are
available in the Godot community. Many developers freely share
both their code and expertise to be�er support Godot and its
community. Therefore, in this chapter, we spent a lot of time
discussing the needs of accessibility and implementing features that
added another layer of polish and depth to our project. When it
comes to accessibility, there is no catch-all that works for every
game, but we did discuss a few standard features, such as rebindable
keys, subtitles, and a wide range of options for catering your game’s
UI to best suit the largest range of players. At the end of this
discussion, we updated our Se�ings scene to have a page for
rebindable keys.

After we looked at accessibility, we spent time analyzing the
multiple ways you can save data in your project. While our project
has li�le to no data that requires saving now, it was an important
topic to cover as it’s a foundational piece of every game created and
played. Finally, we implemented two more features. The first was
creating rebindable keys. The second was switching scenes. Both
tweens and scene switching are common and easy features to
include.

https://docs.godotengine.org/en/stable/tutorials/scripting/change_scenes_manually.html

Now, we’ll get into the details of exporting our project and
uploading it to itch.io. In the next chapter, we’ll look at exporting to
Windows, Linux, and iOS. We’ll discuss the current state of
exporting in C# and its limitations. The last thing we’ll do is create
an account on itch.io and upload a project to make our game
accessible to the world.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

http://packtpub.com/unlock

11

Exporting Your Game

By this point of the book, we’ve completed all the programming and
se�ings for our project. Yay! Give yourself a huge round of applause
for making it this far. I hope you are happy with your project and
find it to be a good jumping-off point to continue developing games
in Godot with C#.

However, we’re not quite done, because we need to share our project
with the world. To do this, we need to export our project and test out
our exported version of the game.

In this chapter, we’ll cover a variety of concepts relating to exports.
We’ll discuss what exporting your game means and what happens to
your game in the process. We’ll specifically look at how to export our
project for Linux, Windows, and iOS. Briefly, we’ll touch on
exporting to HTML5, but given the current state of C# and web
exports in Godot 4 as of this writing, we won’t be able to do it.

Unfortunately, you cannot export a C# project to HTML. However,
this will be added and supported once the Godot team is able. This is
something they have stated repeatedly. The last thing we’ll cover is
how to upload our executables to itch.io to allow anyone in the
world to play your game. It’s important to know how to export your
project, so you can share it with the world regardless of the system

your players are on. While we’ll primarily focus on exporting for
Windows, we will briefly be discussing exporting to Linux and
macOS.

So, in this chapter, we will cover the following topics:

Understanding what exporting is
Downloading export templates
Exporting our game to Windows
Uploading our game to itch.io

Technical requirements
For this chapter, the technical requirements will be the same as
Chapter 1.

All the code from this chapter will be available in the GitHub
repository here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Understanding what exporting is
If we were to browse to the disk location of our Godot project, we
would find a file called project.godot . This file, along with the assets
and C# solution of your game, allows people to play the game in
engine. However, this also opens up the game’s entire code base,
which means people can modify it for be�er or for worse by easily
importing the project.godot file and tinkering around.

Perhaps the biggest reason to export your project, especially when
launching on platforms such as Steam and GOG, or even on a

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-

console, is to be able to deploy updates to your game as needed. This
ranges from patches to fix bugs to added downloadable content.

The process of exporting means we can package our project.godot
file along with all our scenes and resources to be an executable that’s
easy for our players to interact with in a way that’s familiar to them
and safe for developers.

Downloading export templates
Export templates are executables designed to work for specific
platforms, not limited to just your standard operating systems.
Export templates take the code and assets and convert them into
executables for specific platforms. These platforms include options
for mobile and web, as well as an option to create your own export
templates – this option is particularly useful when you are using a
specific or private software development kit (SDK).

Note

As of this writing, you cannot export C# projects to
HTML5. The Godot community is working on a fix,
and many improvements have been made to web
exports since Godot 4’s release, such as Android
support and an upgrade to .NET 8.

Accessing the export templates is easy. Start by clicking Project and
selecting Export. A new window will appear that looks like Figure
11.1:

Figure 11.1: The Export menu in Godot

Currently, it’s blank. This is because we have no export templates
downloaded for exporting a project, but we’ll be adding one for each
operating system.

Note

It is possible to export to Windows, Linux, and macOS
without owning a machine that has all three operating
systems on it. With the correct export template
downloaded, Godot will serialize the project correctly.
However, if you want to test the exported project on a
different operating system, you can ask a friend or set
up a secondary environment for yourself.

Before we get into any one specific operating system, let’s download
the export templates for Windows, Linux, and macOS.

Click the Add… bu�on at the top of the Export menu as shown in
Figure 11.1. You should see a new drop-down menu, as shown in
Figure 11.2:

Figure 11.2: The available export templates in Godot

Here, we’ll select the Windows Desktop option. Once we do, it will
be added under the Presets side of the Export menu, as shown in
Figure 11.3:

Figure 11.3: Adding the Windows preset to our export menu

You will also see that we have some red text at the bo�om of the
menu. This provides the default options for exporting on that
platform. Oftentimes, we will need to add an export template,
especially when more tools like SDKs are needed to properly export.
By default, export templates are required when creating packages,
which is what we’ll be doing with our project.

Adding the export template for Windows is very easy. In Figure 11.3,
the last line of the red text says, Export templates for this platform
are missing: Manage Export Templates. As you can see, Manage
Export Templates is a bu�on. Click on it. The Export menu will
briefly disappear and be replaced by the menu shown in Figure 11.4:

Figure 11.4: Downloading an export template

The new menu that appears is Export Template Manager. It gives
you some options as to where to download the export template
from, or if you have a custom one, you can browse to its location and
install it. Simply click Download and Install and a progress bar will
replace the Download from drop-down menu. Once it’s complete,
click the Close bu�on.

Note

Make sure you are downloading the export templates
for the correct version of Godot. Otherwise, they will
not work, and Godot will have an error message in red
text notifying you that you are missing export
templates. If you’re using an older version of Godot,
you can find the export templates here by clicking the
version you’re using and then selecting the .NET
bu�on next to Export Templates:
https://godotengine.org/download/archive/.

https://godotengine.org/download/archive/

Now, let’s click Project, then Export again to return to the Export
menu. This time, the red text that was giving us an error should be
gone, and we have a note in yellow text about changing the icon or
app information data, as shown in Figure 11.5.

Figure 11.5: Export menu after adding the Windows export template

With one of our export templates installed, let’s now talk about some
of the Export menu se�ings. We’ll start with the row of bu�ons along
the bo�om of the window, as shown in Figure 11.5:

Export All: This option will export the project for all added
presets. For example, once we add the Linux preset, if we click
this bu�on, it will export for both Windows and Linux.
Export Project: Rather than exporting for all added presets, this
option only exports for the platform that’s been selected.

Export PCK/ZIP: This exports the package as either a PCK or
ZIP package. It’s important to note that this does not make the
game a playable build and is often used when uploading for
HTML5 games.
Close: This simply closes the Export menu window.

On the right-hand side of the Export menu, we have a bunch of
different options for how to export our project:

Name: This will be the name of the executable as users see it. At
its default, it takes the name of the preset platform that’s
selected. It’s important to rename this to your project.
Runnable: This means the executable is a one-click deploy
option for platforms where it may be applicable, such as mobile.
You can read more about one-click deploy here:
https://docs.godotengine.org/en/stable/tutorials/ex
port/one-click_deploy.html.
Export Path: This is where the project executable will be on your
machine. Be sure to browse to a path that’s outside of the project
and somewhere you’ll remember.

Underneath the Export Path option, we have a series of tabs:
Options, Resources, Features, and Encryption. Let’s break down the
first tab, Options, and briefly discuss what’s inside it (all options
will be left in their default state):

Custom Template: This has two properties, Debug and Release.
These are both for browsing custom export templates, but since
we’re using the default ones from Godot, we don’t have to
worry about this.

https://docs.godotengine.org/en/stable/tutorials/export/one-click_deploy.html

Debug: This option does some behind-the-scenes error
guarding and should be selected when creating builds for
games that are being tested. It also provides a debug log, which
is useful for diagnosing crashes and other existing bugs in your
game.
Release: This option has some optimizations that ensure it runs
a bit smoother and should be used when you’re creating a final
build for release.
Debug: This is a great, useful option when sending a project to a
friend and/or testing your exported project. The options allow
the project to be packaged with additional output, if necessary.
Export Console Wrapper: The drop-down menu has three
options, No, Debug Only, and Debug and Release. The default
is Debug Only, and this means we’ll have console output go to
a debug console with our executable. We don’t want this option
for a complete project, so select No if that’s the case for you.
Otherwise, a window console will be launched when the
executable is run.
Binary Format: Here, we have Embed PCK and Architecture:
Embed PCK: We want to enable Embed PCK. This means when
Godot exports our project, it will bundle the PCK file that it
generates into the binary of our project. It’s one less file that you
and your player need to keep track of. Some benefits of
embedding the PCK are that the game is easier to hot patch, you
can offer mod support, and you can keep the code base hidden.
You can read more about the benefits of embedding the PCK or
not here:

https://docs.godotengine.org/en/stable/tutorials/ex
port/exporting_pcks.html.
Architecture: The architecture will be based on what platform
you want players to be able to access your game on.
Texture Format: This is how textures are exported in the project.
The first two options listed, BPTC and S3TC, are the default
options. S3TC stands for S3 Texture Compression. The next
options, ETC2 and ASTC, stand for Ericsson Texture
Compression and Adaptable Scalable Texture Compression.
The default is primarily ETC2 and ASTC. All of these are
different algorithms for lossy texture compression, which you
can read more about here:
https://docs.godotengine.org/en/stable/tutorials/as
sets_pipeline/importing_images.html.
Codesign: This is specific to Windows and macOS exports. Both
operating systems will warn users about running your game, an
executable, since it doesn’t have a certificate that validates it as a
safe program to run. Naturally, this can be alarming to players.
For more information on how to sign an executable for the
operating system you’re exporting to, you can read about it
here, as it differs for each OS:
https://docs.godotengine.org/en/stable/tutorials/ex
port/index.html.
Application: This is information about your program and how
it should present itself to users. Most of these options are only
visible when Modify Resources is toggled on.
Modify Resources: When toggled on, this allows the icon and
metadata of the executable to be altered.

https://docs.godotengine.org/en/stable/tutorials/export/exporting_pcks.html
https://docs.godotengine.org/en/stable/tutorials/assets_pipeline/importing_images.html
https://docs.godotengine.org/en/stable/tutorials/export/index.html

Icon: Browse to an image and change the icon that’s seen with
your executable. The default is the Godot icon image.
Console Wrapper Icon: This can be left empty by default and
will use the preceding Icon property.
Icon Interpolation: This is the interpolation method used to
resize the application icon.
File Version: This is to determine what version your files are.
There are various formats for tracking software versions. The
most common one follows the format of major, minor, and
patch. For example, this would be version 1.0.0 for us.
Product Version: This is the same as File Version except for the
application itself. It would also be 1.0.0.
Company Name: The company, or group, that created the
application. It’s required, and its default is Company Name.
Product Name: This is the name of the project.
File Description: This is the file description that will appear to
users, or players, of the project.
Copyright: This is for what kind of licensing the project is
under.
Trademarks: This is a space for trademarks and registered
trademarks relating to the files.

Most of these options will be the same for each executable. The
biggest differences will be how the export is packaged for each
operating system. The same is true for web exports. We will look at
this in more detail later in the chapter.

Note

With the Modify Resources option enabled, there will
be a yellow warning message at the bo�om of the
Export window, telling the user that they must have
the rcedit tool configured in Editor Se�ings for this
option to work. You can follow the steps for that here:
https://docs.godotengine.org/en/stable/tutor
ials/export/changing_application_icon_for_wi
ndows.html.

For now, let’s move on to the Resources tab and review how
resources are differentiated in the export process. Non-resources
such as text files and JSON files need to be marked in the export
se�ings, so Godot does not try to serialize them into an executable.
Within this tab, there’s only one option, and that’s Export Mode. The
other two are blank lines where we can specify the resources by file
type to not include in the export process, as shown in Figure 11.6:

Figure 11.6: The Resources tab within the Export menu

https://docs.godotengine.org/en/stable/tutorials/export/changing_application_icon_for_windows.html

If we click the drop-down menu, we’ll get a set of options that look
like Figure 11.7:

Figure 11.7: The Export Mode options for resources in Godot

Let’s see what each of these options means and how they impact our
project:

Export all resources in the project: This exports everything in
the project and does not stop to consider any special files or
resources that may require a different process when being
exported.
Export selected scenes (and dependencies): Selecting this
option allows you to pick and choose which scenes and
resources to export. This is useful when you don’t want to
include test or debugging components. You can see an example
of this in Figure 11.8:

Figure 11.8: Exporting specific scenes in Godot

Export selected resources (and dependencies): This is the same
as exporting specific scenes, but applies to resources instead.
When selected, a window somewhat like Figure 11.8 will appear.
Export all resources in the project except resources checked
below: This option does the same as Export all resources in the
project, except for the ones you specifically mark that you do
not want to be included in the exporting process. This is good
for when you have testing scenes or scripts that you don’t want
interfering with the project.
Export as dedicated server: This option will remove all visuals
from the project and replace them with placeholders. For more
information on which visuals are removed, you can read about
it here:

https://docs.godotengine.org/en/stable/tutorials/ex
port/exporting_projects.html.

Most of the time, we’ll select Export all resources in the project or
Export selected scenes (and dependencies) when exporting a
project. For this project, we’ll select Export all resources in the
project. We have no resources that need to be excluded from the
exporting process, so it’s fine to go with the default option here.

Moving on, we have a few more options to fill out in the Export
menu. After selecting the scenes and resources we want exported,
it’s important to tell Godot if there are any files or folders that aren’t
resources. In Figure 11.9, we can see the two additional options.
They’re fill-in-the-blank style options where you input the file type
and separate each with a comma.

Figure 11.9: Excluding files from being exported in Godot

The most common example of when you will use this space is if you
have dialogue that’s in the .json format, or you have data that’s
loaded into the game from a .csv file or something similar. This is
how we tell Godot that these are files that should not be packaged
and exported along with Godot files, even though they’re inside the

https://docs.godotengine.org/en/stable/tutorials/export/exporting_projects.html

project. Again, we have no non-resource files to include in the
project, so we will leave it blank.

Now that we are familiar with export templates and the options
available in Godot’s Export menu, we can export the project and
upload it to itch.io.

Exporting our game to Windows
Now that we’ve covered how to acquire export templates and the
options that come with them, let’s look at filling out that information
and exporting the project to be executable. We’ll specifically look at
exporting for Windows, but the steps for Linux and macOS are
similar.

To get started, let’s return to the Export menu by clicking Project in
the top-left corner of our editor and then selecting Export... if you
closed the window. When the Export window appears, we’ll select
the operating system (Windows in this case) and notice the Export
Path option above all the other information we filled out. Click the
folder icon next to Export Path, and we’ll browse to a place where all
our executables and ZIP files will be created, as shown in Figure
11.10:

Figure 11.10: The Export Path window for the Windows export

Browse to somewhere you’ll remember – I’ve chosen somewhere in
my Documents folder – and create a new folder called
godot_book_exports . This folder will hold all the exports you create for
this project. In the File property at the bo�om of this second
window, name the executable godot-book-windows , so we know that it’s
the Windows export. Then click the Save bu�on. Now, when we
select the Export option in the Export window, the folder we created
and the name we gave the executable are what will be created.

Looking at the Export window in Figure 11.10, we have three
different ways to export. For now, we’ll select the Export Project...
option as it will export the project for the selected platform, which is
Windows in this case. Once we select Export Project..., a new
window will appear that looks almost identical to the Export Path
one, but it is not! Once we click Save in this window, the project will

be exported, and we’ll see a small window with progress bars, as
shown in Figure 11.11:

Figure 11.11: The project exporting

When Godot is finished exporting, Figure 11.11 will disappear. You
can then browse to the godot_book_exports folder, where you’ll find a
Windows executable called godot-book-windows , and it should have the
Godot Engine icon as its icon. It’s easy to rinse and repeat these steps
for other platforms. For platform-specific questions, you can read
more about exporting on those platforms here:
https://docs.godotengine.org/en/stable/tutorials/export
/index.html.

Now that we’ve successfully exported to one platform, let’s look at
uploading this executable to itch.io to share with the world!

Uploading our game to itch.io
Finding a home for your project once it’s ready is a difficult decision.
Of course, there’s Steam and GOG.com, but both of those require an
investment of time and money, whereas itch.io doesn’t. itch.io has
become the go-to website for hosting game jams and uploading

https://docs.godotengine.org/en/stable/tutorials/export/index.html

games. It’s an independently owned platform that has become a
pillar in the indie game dev scene, especially when it comes to
creating prototypes and participating in game jams. Both video
games and tabletop roleplaying games are projects primarily hosted
on the site.

Go ahead and navigate to itch.io now by using this link:
https://itch.io/. In the top-right corner, click the Register
bu�on, and you’ll be brought to a new screen that looks like Figure
11.12:

Figure 11.12: Creating an itch.io account

While filling out the form on the left-hand side, you can see on the
right-hand side the type of platform that itch.io is. At the bo�om of
the page, as seen in Figure 11.13, you can also find some options for
joining their newsle�er as well as why you’re signing up for itch.io
(to enjoy free games or share them, or both).

Once you’ve completed creating your account, select the options you
want, accept the terms of service, and click the Create account

https://itch.io/

bu�on.

Figure 11.13: Finishing account creation on itch.io

Once your account is created, you should see it on your dashboard.
It should look like Figure 11.14. This page is where you’ll see your
projects and analytics for those projects.

Figure 11.4: The itch.io dashboard after creating your account

The next step is to click the large Create new project bu�on in the
center of the screen. We’ll fill out some information about our project
and the best way for people to interface with it. Once that bu�on is
clicked, we’ll get a new page, as shown in Figure 11.15:

Figure 11.15: Creating a new project on itch.io

Most of the information on this page is self-explanatory, but let’s
walk through it to make sure we don’t miss anything:

Title: The name of the project and how it will appear on itch.io.
Project URL: This is the URL you will give to people, so they
can access your game page and download your project. A URL
is auto-generated based on the title you choose, but you can
change this before creating the project.
Short description or tagline: Exactly as described. This is a
small blurb that will appear when your project is shown to
people who are browsing the site, so you want it to be a one- or
two-line elevator pitch of what the project is.
Classification: This option is used to classify how your game is
categorized on itch.io. People can browse by category and tags,
so it’s useful in that regard. We’ll make sure this is set to Games.
Kind of project: This option asks what type of files are being
used in the project. We’ll leave this as Downloadable, since the
project is a downloadable executable for people to try out.
Release status: This option is to let people know where your
project’s at in development. We can set this to Prototype or In
Development, as it’s a project for educational purposes.
Pricing: The next couple of options relate to pricing. You can sell
and promote your game through itch.io, but since this is an
unfinished prototype, select No payments when it comes to the
price model.

Uploads: Here, we’ll click the Upload files bu�on. It’s best to
upload a ZIP file as the file size limit is 1 gigabyte.

Below the section for uploading the project files, under the Details
heading, this information is how people visiting your game page
(the URL that’s created once this project is created on itch.io) will
interact with it, as shown in Figure 11.16:

Figure 11.16: The Details options for creating a project on itch.io

Let’s break down what each option entails. This includes the
following information:

Description: This is where you can put the pitch for your
project, as well as credits and other information you want to
relay to the player.
Genre: Here, you select what genre the project falls under. It can
only be one, so choose the one that fits best!
Tags: Tags will help your project be shown based on the filtering
and search a user on itch.io uses. Use common and concise ones
that fit the project.
AI generation disclosure: With AI on the rise, it’s important for
all creators to notify their players how they are utilizing it. This
is a simple yes or no option.
App store links: If there are other ways to play your game, such
as on Steam or an app store, you can include those links here.
Custom noun: If your project is something other than a game,
you can specify that here.
Community: This determines how people can interact with
your game page – whether they can leave comments or not and
provide feedback.
Visibility & access: This option determines whether the game
page is in draft form, restricted, or public. Each option is
explained next to the listed options. For projects that you are
still working on and don’t want feedback on, a draft or
restricted page is good.

Once all the information has been filled out, there are still a few
more things that can be done to polish the project’s page. If we scroll
back to the top, there is a second column with options to upload a
cover photo and provide screenshots along with a gameplay trailer
link from somewhere such as YouTube. These aren’t required for
creating a project, but they help in the visibility of the project and
add a level of polish that is nice to see. When you feel there is
enough information about your project, we want to make sure we’re
uploading the correct files in the correct way for people to play.
Scroll to the bo�om of this page and click Create new project. This
ensures all the information is saved before we move on to uploading
the exported pieces.

After clicking the Create new project bu�on, let’s go back to Upload
files, as shown in Figure 11.17:

Figure 11.17: The Uploads section when creating a new project on itch.io

Click the Upload files bu�on and a new window will appear to
browse to the folder of exports we created earlier in the chapter.
Select the Windows executable we created called godot-book-
windows.exe and click Open.

Note

Do not navigate away from the itch.io project page
while uploads are being done.

Once the upload is completed, there are some options for how the
files should behave on the itch.io website. We want to select the box
next to the Windows icon to tell itch.io that this is a Windows
executable. Then, we want to uncheck the Hide this file and prevent
it from being downloaded option. All of this is shown in Figure
11.18:

Figure 11.18: Uploading the Windows executable to itch.io

Once the options have been set, go ahead and scroll to the bo�om of
the project page and click Save. Next to the Save bu�on, there is a
bu�on called View Page. After clicking Save, we’ll click View Page,
and you’ll see something like Figure 11.19 on your screen.

Figure 11.19: The project page on itch.io with the Windows executable

Great! We’ve now successfully uploaded our Windows executable to
itch.io. Now, we can upload the rest of our exports and customise
our game page to be more thematically tied to the project we’ve
created.

Next, we’ll take our a�ention beyond our project by looking at the
Godot community and other available resources in it.

Summary
In this chapter, we explored the requirements and necessary
components of exporting our project, such as downloading export
templates in Godot. Next, we discussed how to configure our project
for exporting to any operating system, with a focus on exporting

from a Windows machine. Then, we created an itch.io account and
learned how to upload and present that project on itch.io, a website
renowned for games.

Knowing how to export your game means you can share it with
friends, family, and the world. It’s also a required step if you want to
participate in a game jam of any kind. The chapter also explained
how Godot creates and handles executables, as well as providing a
glimpse into the world of how executables are managed across
different platforms. Now, it’s time to test your project, garner
feedback, and iterate on it to make a game you’re proud of having
created.

With a project ready to be shown to the world, we’ll turn our
a�ention to other resources within the Godot community. We’ll also
spend time looking at the Godot Engine project on GitHub and the
process involved in reporting bugs, issues, and other ways to
interact with the Godot Engine community at large.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases

http://packtpub.com/unlock

made directly from Packt don’t require an
invoice.

12

Contributing to Godot and
Additional Resources

The project we’ve spent the last 11 chapters creating is now
complete. We have created a C# project in Godot and then exported
it to itch.io to share with others.

As we followed this journey, we learned about many different
components within Godot, such as the UI, audio, and navigation.
But beyond what Godot provides out of the box, there are also many
more resources available. One of the great benefits of Godot being
open source is that creators around the world can improve its
usability and provide quality-of-life improvements that may be
beyond the scope of what even the Godot team can accomplish.

In this chapter, we’ll step through installing plugins and accessing
Godot’s Asset Library. We’ll discuss how they’re useful and allow
developers to easily integrate tools and assets into their projects.
Besides that, we’ll spend time looking beyond the project and more
at the Godot community. Specifically, we’ll look at how to navigate
Godot Engine’s repository and how to contribute to the engine.
Lastly, we’ll discuss what other available resources there are and
highlight some prominent creators in the Godot community.

In this chapter, we’ll cover the following:

Navigating the Godot Engine repository
Contributing to Godot
Reviewing useful plugins
Highlighting Godot communities and creators

Technical requirements
For this chapter, the technical requirements are the same as in
Chapter 1.

All the code from this chapter is available in the GitHub repository
here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Navigating the Godot Engine
repository
While we briefly covered creating our own GitHub account and
repository in Chapter 11, accessing and understanding one not
maintained by yourself can be a li�le overwhelming. Let’s start by
navigating to the Godot Engine GitHub page, which you can find
here: https://github.com/godotengine.

In the middle of this page, you should see six pinned projects, as
shown in Figure 12.1. Each of these projects is critical to the support
and maintenance of Godot Engine. Outside of the first project, godot ,
which is all the C++ code for Godot, we also have the

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-
https://github.com/godotengine

documentation, demons, bindings, proposals, and learning
resources:

Figure 12.1: The Godot Engine GitHub page

While we won’t step through every project on this page, we will look
through a few, specifically godot , godot-docs , and godot-proposals . Each
one serves a different purpose relating to Godot. The first one, godot ,
is the game engine’s code, and the one you’ll most likely become
familiar with. You can access it by following this link:
https://github.com/godotengine/godot.

At the top of the page, you’ll see a bunch of folders and files with
various options, such as Code, Issues, and Pull Requests. But first,
let’s scroll down to the README . This is a document that’s included in
every GitHub repository and is full of good information for users

https://github.com/godotengine/godot

trying to interface with their work. The README will look something
like Figure 12.2:

Figure 12.2: The README for the Godot Engine repository

The README file starts off by explaining what Godot is and what’s
included in this space. Notice at the top of Figure 12.2 that it has
some additional tabs – here you can find the code of conduct, as well
as the license that Godot is under. Be sure to familiarize yourself
with the code of conduct before engaging with the community to
make sure you’re doing so in a respectful manner.

If we continue scrolling through the README , we’ll get to a section
called Community and Contributing. This has a lot of useful links
that we’ll be referring to later regarding filing an issue found in the
engine, as well as creating our own pull requests to submit fixes.

The last section, Highlighting Godot Communities and Creators,
provides helpful documentation, demos, and various learning

resources. We’ve referenced some of these throughout the book and
will be highlighting more of them throughout this chapter.

Now, let’s go back to where we saw the tabs for Code, Issues, and
Pull Requests. Code is simply the source code for Godot, so if you
ever wanted to look under the hood and see how something in the
engine works, you can. This is the beauty of an open source game
engine. Pull Requests contains existing pull requests from
community members that either add or fix features of the engine.
Finally, Issues covers existing bugs within the engine. This is what
we’ll be focusing on first. Click on the Issues tab, and you’ll see a
screen that looks like Figure 12.3:

Figure 12.3: The Issues page of the Godot Engine repository

On the Issues page, we can see a list of existing issues that have been
opened by anyone accessing the repository. Most of them are
properly labeled (as they should be), which allows contributors to
prioritize issues based on their time and skillset. Issues are existing

bugs, incorrect behavior in the editor, or some other problem
regarding functionality in Godot.

At the very top of this page, there’s a call to action that provides a
link to the contributor guidelines, as well as a list of good first issues
for new contributors to work on. You can also find the good first
issues by filtering on the good first issue label, which you can find
by clicking the Labels bu�on, shown in Figure 12.4:

Figure 12.4: The Labels and Milestones bu�ons on the Issues page

Clicking the Labels bu�on takes us to a new page where we can see
a list of every label in the repository. We can also see how many
issues there are for each label. For example, there are currently 11
issues with the good first issue label, as shown in Figure 12.5:

Figure 12.5: The list of labels in the Godot Engine repository

Keep in mind that every issue in the repository includes every
version of Godot, including the LTS 3.6 version and any future ones.
LTS here means long-term support. Even though Godot 4 is the
recommended version, 3.6 is a stable one that continues to receive
bug fixes and feature integration from Godot 4. This page is an
excellent place to check if you’re having an issue in the engine that is
lacking clarity in the documentation, especially if you’re using the
latest version of the engine, which may not be a stable release.

Note

To report security vulnerabilities, the Godot team
requests that emails be sent to security@godotengine.org .

At the top of the Labels page, there should also be a Milestones
bu�on, as shown back in Figure 12.4. Let’s go ahead and click that. It
will show us a new page, as in Figure 12.6, providing a breakdown of
how far along each version is before it moves to the next version. For
example, we can see that Godot 4.3 is at 80% completion.

Figure 12.6: The milestones for Godot Engine on GitHub

Milestones are a great way to look at the big picture of how Godot is
being developed and which versions are in the works. We can even
click 958 open and see the full list of each issue that needs to be fixed
before 4.3 can be released. You can also browse the closed issues to
see what new features and fixes are coming to the latest version of
Godot. These are usually aggregated and shared in the Godot blog,
which often provides only high-level updates for each area within
the engine. You can read the Godot Engine blog here:
https://godotengine.org/blog/.

https://godotengine.org/blog/

As we continue through the chapter, we’ll cover a couple of other
areas that will be beneficial to you as a developer, such as pull
requests and creating your own issue tickets.

For now, though, we’ve spent a decent amount of time exploring the
GitHub repository for Godot. Let’s spend some time interacting with
and contributing our expertise to the Godot community.

Contributing to Godot
Now that we’re familiar with the GitHub repository for Godot, let’s
look at how we can contribute to the community. We’ll look at four
primary ways that anyone can contribute – the first two will be
developer-based ways, and the last two will relate to documentation.

As we saw earlier in the chapter, the README for Godot provides a link
to contributing guidelines, which you can also find here:
https://github.com/godotengine/godot/blob/705b7a0b0bd53
5c95e4e8fb439f3d84b3fb4f427/CONTRIBUTING.md.

Developer contributions
As mentioned, there are two different ways as a developer to
contribute to Godot. The first is by finding and reporting bugs in the
engine, while the second is fixing those same issues and submi�ing a
pull request. While we won’t go through every step of the process
for each, we’ll provide a great launching point for both.

Reporting bugs

https://github.com/godotengine/godot/blob/705b7a0b0bd535c95e4e8fb439f3d84b3fb4f427/CONTRIBUTING.md

Reporting bugs is a crucial and necessary step in improving Godot.
If we navigate back to the Issues page on the Godot repository, we
will see a green bu�on called New issue, as shown in Figure 12.4.
Once we click this, we’ll see a new page that shows a big green Get
Started bu�on for reporting bugs. Click that and you will be taken to
a new screen, as shown in Figure 12.7. This new screen is the form
you fill out to create and submit an issue.

Figure 12.7: Creating a new issue on the Godot Engine repository for bugs

While there’s a lot of text here, all of it is important to keep the issues
created in the repository clear and clean so that any other user can
easily and quickly replicate and work to resolve them. Let’s briefly
discuss each part of the form:

Title: This is the name of the issue, which should clearly
identify a single bug.
Tested versions: As with any piece of software, there are
multiple versions with varying levels of support, and this
should be specified in your ticket. Since Godot can be built from
source and modified to user needs, it’s important to differentiate
between whether the bug is in the official version or a custom-
built one.
System Information: This is general hardware information that
allows the community to determine whether it’s a driver issue
or something else.
Steps to Reproduce: This is a numbered list of the steps anyone
could take in the version of the engine listed to encounter the
same bug.
Minimal Reproduction Project: This is a small, zipped-up
project that has the bug present. This is extremely useful for
members to try and reproduce the bug.

Note

Before creating any bug tickets, make sure you search
for existing issues, so you aren’t creating a duplicate
ticket.

After all fields have been filled out, scroll down and click the Submit
new issue bu�on.

Understanding open issues

Let’s use a closed issue as an example, specifically an issue with the
good first issue label on it. I’m going to use the issue called
OpenGL: Environment fog does not affect sky rendering. Here is
the link for it:
https://github.com/godotengine/godot/issues/66456. You
can also see the beginning of the issue page in Figure 12.8:

Figure 12.8. An existing issue in Godot to use as an example

Notice how the title is very clear, and the issue post follows the same
format as we just discussed. Scrolling through the rest of the page,
you can find the steps to reproduce the bug as well as a link to a
minimal reproduction project. Past the initial post, we can see where
this issue has been, who has been involved, and its current state.
Figure 12.9 provides a snapshot of the issue’s timeline:

https://github.com/godotengine/godot/issues/66456

Figure 12.9: The timeline of the issue in the GitHub repository

Throughout this timeline, there are also comments about the state of
the issue. For instance, we can see that this issue was confirmed to be
a bug by the Godot team on September 26, 2022. It’s also been added
to Godot 4’s milestone. Scrolling further down the page, we can see
community members commenting and brainstorming together on a
solution. It’s important when considering an issue to fix to get all the
information you can on the current state of the issue, as well as
whether anyone is already working on a fix. Of course, commenting
on it does not mean it’s “yours” to fix.

Once you’ve found an issue you want to fix, like the one we’re
referencing here, your next step is to read some contributor

guidelines and then fork the repository. Again, the guidelines for
contributing to the engine can be found here:
https://github.com/godotengine/godot/blob/master/CONTRI
BUTING.md. It’s important that you thoroughly read the community
expectations and how to format the issue ticket when creating it as
we highlighted previously.

Some of the important things to know are the following:

Read the entirety of the contributing web page that’s been
linked here
Consider readability in both your commit messages and pull
requests
Be sure to write unit tests to confirm the issue is fixed or proof
that the issue exists

Once the ticket is created and the files uploaded to showcase an
issue being solved (if it’s to fix an existing issue), then you’re done.

Note

Calinou, the author of this issue, is a member of the
Godot team. If you’re ever wondering which member
is working on what part of the engine, you can always
check the Godot Engine Teams page here:
https://godotengine.org/teams/.

Documentation contributions

https://github.com/godotengine/godot/blob/master/CONTRIBUTING.md
https://godotengine.org/teams/

The Godot documentation is one of the best that I’ve ever
encountered when it comes to software. It’s easy to navigate, search,
and understand. One of the big reasons for it being so good, I
believe, is that anyone in the world can contribute to the
documentation and then it’s collectively reviewed to ensure
accuracy. It can be found by navigating to the godot-docs repository,
found here: https://github.com/godotengine/godot-docs.

There are two ways to contribute to the Godot documentation. They
are the following:

Contributing to class references and tutorials
Translations of tutorials and engine documentation

Contributing to the class reference means adding documentation to
the classes and functions that are part of Godot’s API. These are the
same documents we’ve linked to throughout the book when it comes
to discussing new nodes. Something important to be aware of is that
the process for updating the documentation is different when you’re
changing the online manual versus the offline version that’s
available in the editor. The biggest difference between the two is that
the online manual requires changes to the .rst files, while the offline
version in the editor requires changes to the .xml files. We can see the
XML in the editor in Figure 12.10. This documentation can also be
downloaded and accessed offline for developer convenience!

https://github.com/godotengine/godot-docs

Figure 12.10: The Godot documentation in the editor

Note

To see what’s missing from the class references, you
can use this website, which is maintained by Godot:
https://godotengine.github.io/doc-status/.

The second way to contribute to the Godot documentation is
through translations. This is done through Weblate, which you can
find a complete breakdown of here:
https://docs.godotengine.org/en/latest/contributing/doc
umentation/editor_and_docs_localization.html.

Here, you can help translate the editor, class references, and the
online documentation. Weblate also provides a nice overview of
what languages are currently supported and how far along they are.

https://godotengine.github.io/doc-status/
https://contributing.godotengine.org/en/latest/other/translations.html

It’s another way that Godot strives to support and include its
community.

With the different ways to contribute to the Godot documentation
covered, let’s now pivot to some other resources in the Godot
community, such as plugins.

Reviewing useful plugins
This section will cover a handful of plugins to aid you in your
development process. While this is not an exhaustive list, the few
I’ve chosen to include are ones that I’ve both used in my own project
and had recommended to me by others. Some of these plugins
augment the editor while others make our C# workflow a bit easier.

But before we start discussing plugins, let’s first look at how we
access the Asset Library and install plugins.

Installing plugins
There are two ways to install plugins in Godot. Let’s quickly step
through both methods:

The first is to download the .zip file of the plugin, extract it, and
copy it to an addons folder in our project. This is the same way
you would install a plugin that’s hosted on other sites, such as
GitHub. Sometimes you may need to clone the repository
instead, but either way, it will give you a copy of the plugin to
add to your project. To see all the plugins available, you can
browse Godot’s Asset Library here:
https://godotengine.org/asset-library/asset.

https://godotengine.org/asset-library/asset

Alternatively, you can browse the Asset Library within the
editor by clicking the AssetLib bu�on above the Viewport, as
shown in Figure 12.11. From here, search for the one you want,
select it, and click Download. This method will automatically
create the addons folder and include the plugin information.

Figure 12.11: The Asset Library in the Godot editor

Here, we are looking at the Maaack’s GWJ Template - Plugin
plugin, which is the first plugin we’ll look at in a moment. Let’s
briefly discuss what the rest of the information next to the plugin
icon means:

Maaack’s GWJ Template - Plugin: This is, of course, the name
of the plugin.
Scripts: This is the type of plugin that it is which is Script. Every
plugin is either an asset, tool, or script.
Maaack: This is the username, or the creator’s name, and also
the owner of the plugin. This can either be a company or
individual.
MIT: This is the type of license that the plugin uses. It’s
important to note this as some plugins require a specific way to
credit them based on their license.

Note

GWJ here stands for Godot Wild Jam.

The last thing to be mindful of when installing plugins is that it’s
important that you make sure they are viable for the version of
Godot you’re on. When we look at Maack’s GWJ Template - Plugin
on the Asset Library’s website, we can see the version of Godot that
it’s compatible with, as shown in Figure 12.12. If we’re able to install
it in the version of our editor, then it’s compatible. Otherwise, the
search result won’t be rendered.

Figure 12.12: The Maaack’s GWJ Template - Plugin information on the Godot Asset Library web
page

Click on the plugin in the editor and a new page will appear,
providing details about the plugins as well as options to download
it, as shown in Figure 12.13:

Figure 12.13: The details page for the Maaack’s GWJ Template – Plugin page

With a plugin installed, it needs to be enabled. In Godot, click the
Project bu�on in the top-left corner. Then, in the dropdown, click
Project Se�ings. A new pop-up menu will appear. Navigate to the
Plugin tab at the top of the Project Se�ings menu. Then, enable the
plugin by checking the Enable option, as shown in Figure 12.14:

Figure 12.14: Enabling installed plugins in Godot

For more information about installing and enabling plugins, you can
read about them here:
https://docs.godotengine.org/en/stable/tutorials/plugin
s/editor/installing_plugins.html.

https://docs.godotengine.org/en/stable/tutorials/plugins/editor/installing_plugins.html

Now that we’ve discussed installing and enabling plugins, let’s take
look at some awesome plugins.

Camera Shake for C#
The Camera Shake for C# plugin, created by DawrfSoftworks
(https://godotengine.org/asset-library/asset/2488), is a
plugin that gives your camera some juice. Regardless of the
perspective you’re choosing for your game, there’s an opportunity to
utilize a camera shake, such as adding a camera shake in response to
the environment, such as an earthquake, causing the player camera
to jostle. Another example would be a bullet hell type game with a
2D camera shaking. There are plenty of ways to use this plugin.

GodotSharpExtras
The GodotSharpExtras plugin, created by user eumario
(https://github.com/eumario/GodotSharpExtras), extends the
core GodotSharp library to make writing C# in Godot easier and
faster. For example, two C# a�ributes are added to reduce the
amount of code needed. One of these a�ributes is [NodePath] , which
removes the requirement of typing GetNode<NodeType>() every time
you need access to a node in a scene. The second a�ribute is
[ResolveNodePath] , which helps in fixing node paths. You can see an
example of this in Figure 12.15:

https://godotengine.org/asset-library/asset/2488
https://github.com/eumario/GodotSharpExtras

Figure 12.15: An example of using the NodePath a�ribute with GodotSharpExtras

There are more useful functions like this in this plugin, especially
regarding creating signals and utilizing the Singleton pa�ern.

Godot Ink
Ink is a powerful and awesome narrative scripting language. With
Godot Ink, created by user Paulloz
(https://godotengine.org/asset-library/asset/1891), you

https://godotengine.org/asset-library/asset/1891

can integrate Ink into Godot. The plugin is designed to work with C#
projects, but as Paulloz states, it is interoperable with GDScript.
Figure 12.16 provides a screenshot of an example of Ink. This shows
the syntax for declaring variables, which is useful when it comes to
tracking both inventory items and branching dialogue choices.

Figure 12.16: An example of Ink’s syntax included in the plugin

While there are tons of excellent dialogue plugins out there, this one
is specifically designed to work with C# projects.

Godot Firebase
The Godot Firebase plugin (https://godotengine.org/asset-
library/asset/1645) brings Google’s Firebase to Godot. If you’re

https://godotengine.org/asset-library/asset/1645

unfamiliar with Firebase, it’s a serverless approach to a backend
service that allows you to set up databases, authentication, and
integration into other services. This plugin also makes mobile
development a bit easier, since the plugin is integrated into Godot
and does not require mobile-specific code to run Firebase
applications.

Figure 12.17: Installation screen for Godot Firebase

Aseprite Wizard
This plugin doesn’t apply much to our 3D project, but for 2D
developers, it’s extremely useful. Aseprite Wizard
(https://www.aseprite.org/) was originally created by David
Capelloand and is now maintained by Igara Studio. This is an
excellent tool for creating animated sprites. It allows users to export
sprite sheets and create and manage sprite frames. It also has many

https://www.aseprite.org/

tools to support pixel artists. Aseprite Wizard is not a free plugin; it
requires a one-time purchase.

Figure 12.18: Asperite Wizard website, showcasing its features

Piskel
If you want to try out pixel art, you can use Piskel for free in the
browser. It’s a convenient tool for creating animated sprites and
pixel art. It is very similar to Aseprite Wizard, with different features
and options. It includes a nice list of examples that you can explore
out of the gate for free.

Figure 12.19: Exploring one of Piskel’s provided examples in the browser

This is a starting list of available plugins for Godot and will
hopefully serve as a jumping off point to further explore plugins.
There are many different types of plugins, such as scripts or tools. If
you can’t find what you’re looking for, consider creating a plugin
yourself!

Now, we’ll turn our a�ention to existing Godot communities and
their creators. Again, this won’t be a comprehensive list but rather a
good starting point to collaborate.

Highlighting Godot communities
and creators
With Godot rising in popularity, so too are the number of creators.
While this isn’t an exhaustive list by any means, these are creators
who have been involved with Godot for a long time or come highly
recommended from other Godot communities I’m involved in. Just
like with the plugins listed, I’ll provide a link to each creator’s work

for you to check out the space and see whether it’s something you
might enjoy. Please note that not all of these listed creators work in
Godot and C#, but all of them have something valuable to add to
your Godot toolbelt.

Godot Wild Jam
Godot Wild Jam (https://godotwildjam.com/) is Godot’s largest
monthly game jam. It runs every month for nine full days of
jamming, which includes two weekends, to give participants the
opportunity to relax while being involved in a game jam.

Figure 12.20: The Godot Wild Jam website with a countdown timer and the previous winner

If you’re unfamiliar with the term game jam, it’s when people get
together and create a game in X amount of time around a theme or

https://godotwildjam.com/

using specific tools. I’m the creator and organizer of the Wild Jam,
and it’s something I take a lot of pride in. Our jam has been running
for six years now and has propelled many successful developers into
professional spaces, such as Paradox Interactive, Crytek, and
Ubisoft. The most exciting achievement is that a previous winner of
ours is now on the Godot development team full time.

Chickensoft
Chickensoft (https://chickensoft.games/) is an excellent
resource for people who want to do a deeper dive into the C# side of
Godot than we’ve done in this book. While this book is a great
primer, Chickensoft provides a variety of packages for C#
development in Godot. They have an excellent tutorial for ge�ing
your C# environment set up. On top of that, the Chickensoft Discord
is very active, and users enjoy discussing everything from C#
libraries to architecture.

The community is another supportive and helpful place to showcase
your C# work in Godot or get some help in troubleshooting a
problem. Lastly, the creator of Chickensoft, Joanna, has an excellent
third-person demo in Godot that utilizes all the Chickensoft
packages as an example of how to leverage them in your own
project.

https://chickensoft.games/

Figure 12.21: The ChickenSoft landing page

GDQuest
We spoke at length about GDQuest (https://www.gdquest.com) at
the beginning of this book, but here we’re going to go into a bit more
detail about what exactly GDQuest is and what they provide. They
have multiple courses on Godot 4, although they are primarily in
GDScript. Still, they have useful tutorials on engine-specific
processes, such as understanding raycasts and using the TileMap
editor. All of their courses and tutorials include videos and step-by-
step wri�en instructions. Not all of their content is free, but they do
provide many free resources that are great for learning, such as the
3D mannequin we’ve been using in our project.

https://www.gdquest.com/

Figure 12.22: A screenshot of one of GDQuest’s tutorials from their website

I know there are countless more out there, and I hope the ones listed
here provide a good pathway into the Godot community. It can be
scary sharing your work with others, but it is oftentimes worth it.
The feedback and motivation you can get from sharing something is
much more valuable than the fear or insecurity that may be keeping
you from sharing your work. So, go and explore these Godot
communities and be sure to share whatever you make in the end!

Summary
In this chapter, we spent time looking at the Godot community and
learning what’s available to us beyond the engine and this book. We
explored the list of projects on the Godot Engine’s profile page on
GitHub. Specifically, we explored the Godot Engine repository. We
also stepped through the main steps when contributing to the engine
as either a developer or regarding documentation. After that, we

highlighted some excellent plugins and content creators in the Godot
community, including teachers, YouTubers, and general community
spaces.

Our final chapter will focus on ways to push the project we’ve
created here even further. This will be done by providing a list of
challenges for you to complete and incorporate into your project.
The challenge list will be a perfect opportunity to dig deeper into
areas we’ve worked on in the project but also a chance to explore
parts we didn’t interact with at all. These challenges will be outlined
in a way that provides clear goals and expectations. They’ll also have
a starting point with general directions on how to progress.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

http://packtpub.com/unlock

13

Next Steps as a Godot Developer

Our final chapter is an extensive challenge list that offers you the
opportunity to expand the project we’ve developed or use it as a
jumping-off point for creating your own. This book cannot cover
everything that’s needed to create any video game, but it is a solid
foundation for implementing any ideas you may have. These
exercises can also be a great resource and challenge in game jams.
Feel free to randomly pull a handful of exercises from the list and
use them in an upcoming Godot Wild Jam.

Now that we’ve created our project, explored Godot, and learned
how to submit bug fixes and pull requests, we’ll go through a
curated challenge list broken down by category. The categories may
be areas we’ve briefly mentioned or dive deeper into components
we’ve already covered. You can jump around the challenge list and
complete them in any order you like.

This chapter will cover the following topics:

Participating in game jams
Exploring the challenge list

Technical requirements

For this chapter, the technical requirements will be the same as
Chapter 1.

All the code from this chapter will be available in the GitHub
repository here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Participating in game jams
In previous chapters, we’ve mentioned game jams. We will talk
briefly about what they are and how to get involved in them. To
start, what is a game jam? Well, it’s a set time, often a weekend,
week, or longer, where people get together and create a game based
around a theme. Anyone can create and host game jams. Often,
schools or communities will host them. The best place to find a list of
upcoming or current game jams is on a website called itch.io. You
can access the website by following this link: https://itch.io/.
We’ve already discussed itch.io and posting our projects there in
Chapter 11. Now, we’ll look at some other features it offers, such as
finding and joining a game jam.

We will navigate to the website where we can see a menu bar at the
top left, as shown in Figure 13.1.

Click the Jams bu�on on the bar, and it will take us to a new page
with a calendar view of the current and upcoming jams. We can also
see a row of tiles above this calendar view with some of the featured
jams available, as shown in Figure 13.1:

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-
https://itch.io/

Figure 13.1: The Jams page of itch.io

Clicking any of the jams will take you to the jam page. Every jam
varies in its structure. Some offer prizes, others have no ratings or
rankings.

Let’s walk through the Godot Wild Jam as an example. You will find
the Godot Wild Jam in the calendar. It starts on the second Friday of
every month. I’ll link one here as an example and will use the
screenshots from it for the remainder of this section. You can find the
jam page here: https://itch.io/jam/godot-wild-jam-74.

The first thing you’ll see is the header of the jam page, as shown in
Figure 13.2. Below the jam page’s logo, there’s the following
information:

Name of the jam: The name of this jam is Godot Wild Jam #73.
Hosts of the jam: Below the name of the jam, there’s a line that
shows who the hosts are of this jam, which is the Godot Wild
Jam itch.io account.
Participant number: To the right of the name of the jam, you’ll see
a number, and this is the number of people who have joined this

https://itch.io/jam/godot-wild-jam-74

jam. In Figure 13.2, we can see it’s 682. This number fluctuates
throughout a jam as people join and leave as things happen in
real life. It’s expected, so if you join a jam, do not feel that you
have to complete an entry for the jam. Taking care of yourself is
first and foremost the most important thing to do.
Jam sub-pages: Below the host names, there are two tabs. One is
Overview – the page we’re on – while the other one is a
Community page. We’ll look more closely at the Community
page after reviewing the one we’re on.
Jam/voting times: Further down the page, there’s a block
denoting the remaining time in the jam. In this example, there’s
1 day, 13 hours, and 33 minutes left to complete an entry for the
jam.
Join the jam: Outside of when the jam time is, the second most
important thing is clicking the Join jam bu�on that sits within
the box where jam and voting times are listed.

Figure 13.2: The top of the Godot Wild Jam page for their 73rd jam

Scrolling further down the page, we see a lot of information. The
Godot Wild Jam breaks the information down into the following
categories:

Theme: This is a very common thing in game jams. A large
majority of game jams reveal a theme when the jam starts that’s
either picked by the community or the organizers themselves.
Wildcards: Wildcards are a unique thing to the Godot Wild Jam.
They are optional challenges that push developers to try new
systems or mechanics.
Rules: A common section of any game jam, outlining what is
and isn’t allowed. This can include the type of content in your
game and the tools that are allowed.

Frequently Asked Questions (FAQ): This section covers
common questions, such as when the jam is and the
expectations of participating in the jam.
Links: These are useful resources to help folks who are using
Godot for the first time, specifically when it comes to exporting
their project.
Judging: The Godot Wild Jam is a ranked jam, which means
there is a winner at the end of it.

Not every game jam will have these categories. Some have more,
some have less. It’s very dependent on who the hosts are and what
their goal with the jam is. Godot Wild Jam is very focused on
continual learning and community, which is why there are no
monetary prizes.

Now that we’ve understood the rules and expectations of this jam,
we’ll look at how to submit our game to the jam next.

Submitting a game
To be able to submit a game to the jam, you must click Join jam.
Then, at any point before the jam ends, you must submit a project to
the jam. Let’s look at how to submit an entry to the next Godot Wild
Jam as an example. If the game jam hasn’t started yet and you click
Join jam, you’ll see the following on your screen:

Figure 13.3: The screen you see when joining a jam that hasn’t started yet

When you submit to a jam on itch.io, you’re submi�ing the game
link that has the build of your game a�ached to it, which we created
in Chapter 11. When the jam has begun and you have your game
page created, you can click the Submit bu�on that will appear on
the jam page. It will take you to a submission page and will ask for
some information about your entry. The Godot Wild Jam has a short
questionnaire that’s used to track open source projects as well as
gauge the average experience of participants. The submission page
will look something like Figure 13.4:

Figure 13.4: The submission page on itch.io for Godot Wild Jam

Again, not all jams will require this much information, but due to
the size and frequency of Godot Wild Jam, the team likes to have
data to track its impact and make improvements. Let’s explain what
each part of the submission page entails.

Godot Version: This question pertains to the version of the
engine you created your project in. While the jam page suggests
using version 4 for a stable experience, technically, anyone can
use any version of Godot to participate in the jam. The
specification here is a good marker of which version is most
frequently used.
Wildcards Used: Wildcards are an optional challenge in Godot
Wild Jam. There are always three cards that are voted on by the
community. Occasionally, there is a fourth card for special
events. The challenges can cover any field of game
development. They could be narrative, artistic, programming,
and so on. Participants can use 0, 1, 2, or 3 wildcards. It doesn’t
impact an entry at all. It’s a fun challenge for participants who
want a specific challenge.
Game Description: This box is for a very brief – think one to
two sentences – description of the game.
Theme tie-in: This is another box for a brief explanation of how
your entry ties into the theme for the current Godot Wild Jam.
Source(s): This is a simple question on whether your entry is an
open source project or not. It’s not a requirement for
participation in the jam, but in the spirit of Godot Engine being
open source, the organizers of GWJ want to encourage more
open source projects to be created.
Discord Username(s): If participants are in the Godot Wild Jam
Discord server, they should list each team member’s Discord
handle in case they are the winners of the next jam. Even though
there are no prizes in GWJ, the winners are given the Wildling
role until the next jam winners are announced.

Participation Level (GWJ Only): This only requires a number to
be entered into the box. If this is your first time participating in
GWJ, you’ll enter 1 . Otherwise, provide the correct number of
times you’ve participated in GWJ.

After filling out the submission page, there is a Submit bu�on at the
bo�om of the page. Once this is clicked, the game page on itch.io is
added as an entry to that specific jam. This process is the same for
any game jam on itch.io. The only differences between jams are the
rules and requirements of each jam.

Now that you know how to create a project on itch.io and submit it
to a game jam, let’s talk about ways to expand your game project
and discover more exciting ways to interact with the Godot Engine.

Exploring the challenge list
In exploring the challenge list, the challenge will include some test
use cases for how to utilize the challenge. The use cases are meant to
be a springboard for further creativity. Implementation will be on
your own, but some challenges may include a Ge�ing started section
for how to begin, as well as a Why implement this? section. I’m not
placing difficulty levels on the challenges because everyone comes
into game development with varying levels of experience. Therefore,
what might be difficult for one person might be easy for someone
else. Above all, if you need help, reference the extensive list of
helpful communities that were mentioned in Chapter 13 and the
Godot documentation!

Some of these challenges will be extremely open-ended, while others
will be clear-cut tasks to add polish or a new mechanic to the project.
At the end of this list, there will be a table with all the listed
challenges by category that you can check off as you go along. Yes,
mark up the book, or print out that single page if you’re reading
digitally. I hope you bookmark the pages and make notes in the
margins as you progress through the challenges. Circle the ones
you’re interested in, so you know which ones to come back to. There
is no right or wrong way to approach this.

Understanding juice
Juice is a term that’s often thrown around when working on a video
game project. It can be difficult to define, as it’s not one specific thing
but rather the cumulative polish effect you see in a game. This can
range from anything from a screen shake when the player takes
damage to a series of detailed animations and particle effects
showcasing a player’s move. It could also be something where the UI
pops at the right moment during a sequence of a�acks. This is why
it’s hard to define what juice is for one game, as that may not be
something that adds juice to another. It comes down to what
components of the game you want to highlight to provide players
with a sense of awe and satisfaction when interfacing with your
game.

We’ll be referring to this term throughout the challenge list, so now
you should have a be�er idea of what it means when we say that a
challenge adds juice.

User interface
The challenges listed in this section will all relate to the user
interface (UI) in one way or another. This can be more than just
visual updates and changes. Some will include auditory
enhancements to add depth to a game.

Now, let’s look at what those challenges are. Feel free to jump
around the list and explore ones that interest you or your project:

1. Challenge: Create a radial menu to select objects:
Possible use cases:
Selecting weapons for a player
Switching ammo types
Changing player outfits
Expressing an emote
Ge�ing started: Create a UI container that holds two or more
bu�ons that can be cycled through.
Why implement this? UIs are so much more than blocky bu�ons
or static menu pages. Discovering ways to be�er utilize space in
the UI is a critical component of any UI/UX designer. Radial
menus are also commonly used when it comes to console
games, as the joystick allows quick and easy navigation through
options. Radial bu�ons also allow for the mouse to be at a
certain angle, which may sometimes be more navigable than
clicking a specific key on the keyboard.

2. Challenge: Add audio sounds when entering different bu�on
states (e.g., hover, click):
Possible use cases:
Increase accessibility of your game

Provide player feedback when interacting with the UI
Ge�ing started: Extend the Button class within Godot, as this
function is not natively included.
Why implement this? Adding audio to different bu�on states is a
great way to add both player feedback and accessibility. It
immediately notifies the player when they interact with a
specific piece of the UI. This, in combination with a visual
change, adds a lot of clarity when navigating the UI. Small
things like this give any project a very polished feeling,
specifically in what players can and should do in a game at any
given point.

3. Challenge: Create a heads-up display (HUD) that can be
toggled on and off:
Possible use cases:
Provide useful information to the player
Allows the game to be more accessible
Can be used to incorporate gameplay mechanics
Ge�ing started: Use a CanvasLayer to add a UI to the player’s
screen and keep it in place.
Why implement this? An HUD is a common way for developers
to give immediate player feedback. They can also provide
information for players that allows them to make more
informed decisions. Some games with an HUD also allow a
se�ing for it to be toggled off completely. This can be to make
the game more challenging, or perhaps to allow players to enjoy
the scenery and game more. Either way, it adds a level of
immersion that’s customizable for the player.

4. Challenge: Use tweens to add juice, or game feel, to your
game, specifically in the UI:
Possible use cases:
Responsive feedback
Confirm gameplay mechanics
Relay important information without detracting from other
game events
Ge�ing started: Animate a bu�on on your START screen by
making it bounce with tweens.
Why implement this? Juice in a game is defined by how it looks
and feels. It can relate to the way a game’s UI responds and how
the transitions between menus behave. Short pauses before
destroying an enemy or adding an exciting kill animation are
other ways to add juice. Juice is not limited to only the UI, but
adding it to the UI is an easier start. Utilizing tweens to
complete this task is a natural and surefire way of creating an
awesome UI without having to hardcode it in.

5. Challenge: Animate a piece of the UI, such as the HUD,
bu�ons, or something else:
Possible use cases:
Add juice and polish to your game
Give players feedback about something in the world through
the UI
Ge�ing started: Choose a panel or set of UI elements to animate
when being called on.
Why implement this? Clicking through menus and navigating
sub-menus is almost always required when playing a game.
Making sure those interactions are fast, responsive, and clean is

vital to a game’s success. Even with innovative gameplay
mechanics and interesting stories, it can be challenging to
overlook a UI that is frustrating to navigate.

Player-based
The challenges listed in this section will all relate to ways to improve
the player controller, whether that’s in expanding the animations,
adding more abilities, or something else:

1. Challenge: Add a particle effect when your player lands on the
ground after a jump:
Possible use cases:
Adding juice to your game
Throwing items on the ground
Player landing on the ground
Ge�ing started: Trigger a particle effect by using a key, then tie it
to the player landing on the ground.
Why implement this? Creating impact particles adds immersion
and depth to your game. When adding something like this, it
takes the project to that next level of polish, which is what many
of these challenges strive to do.

2. Challenge: Create a dash ability for the player and use the
animations built into the model for it:
Possible use cases:
Providing an ability for players to unlock
Allowing players to traverse levels faster
An ability required for completing puzzles

Ge�ing started: Increase the velocity of the player and map it to a
key, like running but faster.
Why implement this? Adding more player abilities gives the
player a new and interesting way to explore the world you’ve
created. It can also add depth to the world by creating areas that
are only accessible by utilizing certain abilities to access them.
There is also a player satisfaction in allowing them to dash
around the world rather than simply walking or running,
especially if the player is backtracking in any way in games such
as metroidvanias and platformers.

3. Challenge: Add a double jump to your player:
Possible use cases:
To solve environmental puzzles
To defeat enemies
To find hidden areas in a world
Ge�ing started: Poll for the player’s JUMP key, and if the player
is already in the air, have them jump again. Be sure to limit how
many times they can jump in the air.
Why implement this? A player having a double jump allows them
to explore more of the world with some depth. It’s a great way
to stagger access to other areas of a level by making the ability
unlockable at a later point.

4. Challenge: Create a finite-state machine for your player:
Possible use cases:
Easy extension of the Player class
Cleaner code when reviewing or expanding different states
Decouples the Player class into smaller scripts per state

Ge�ing started: Create two additional scripts, one called Idle and
one called Walk , and write code to alternate between the two.
Create a function that takes in a state and switches to the correct
one based on input from the player.
Why implement this? This makes the player controller very
robust and allows the creation of new types of player states very
easily. Each state having its own script also makes for cleaner
code and makes it easier to add and adjust logic for each state.

Expanding our world
This section of challenges focuses on expanding the world and the
level we’ve created:

1. Challenge: Expand our day/night cycle in the world:
Possible use cases:
To create a planet system
To trigger events based on the time of day
To add depth and immersion with lighting
Ge�ing started: Create a directional light and rotate it with a
moon-like color that’s softer than the Sun in our game.
Why implement this? A day/night cycle is an excellent addition to
games that relate to time passing or need time to pass to trigger
specific events. Using lighting in this way also adds realism to
your game and can show off the visual effects you’ve worked
hard to include in your game.

2. Challenge: Add a door/portal to move the player to another
level or room:
Possible use cases:

When an area needs to be broken into chunks
When you want to switch environments
When you want the player to discover a secret area
Ge�ing started: Add an object to our world and a�ach a script
that loads a new scene.
Why implement this? Changing scenes is a common technique for
loading levels or moving players to another scene for a
conversation or a cutscene. It’s a foundational skill that’s useful
in any project. The important thing when doing it is making
sure you don’t lose any data in the process. It also allows for
less resource loading.

3. Challenge: Add an interactive system to start a conversation
with the NPC in the world:
Possible use cases:
Triggering objects in a level
Starting a conversation
Triggering cutscenes
Picking up objects for the player
Ge�ing started: Add a trigger when the player comes within a
certain range of the NPC.
Why implement this? Interacting with the world, level, or NPCs is
a fundamental way to give players the agency of se�ing their
own pace in a game. It also sets up nice break points for
triggering cutscenes or other in-game mechanics as needed. Of
course, NPCs are often the way in which the game
communicates with the player outside the UI.

4. Challenge: Use the New Inherited Scene bu�on in the Scene
menu to create a variety of mushroom collectibles in the

world:
Possible use case: Creating multiple copies of an object that
inherits the same properties
Ge�ing started: Click the New Inherited Scene bu�on and create
a mushroom that’s a variant of the one we created earlier.
Why implement this? Most likely, you’ll have items in your game
that are similar but not quite identical. Being able to group
together some of their resources without needing to recreate
them every time is a huge time saver.

5. Challenge: Create or find a dialogue plugin and have a
conversation with an NPC:
Possible use cases:
Sharing a story
Adding flavor text to items or in-game moments
Ge�ing started: Consider checking out plugins such as Dialogic
or Mad Parrot Studios for implementing a dialogue system. Tie
an action key when in range of the NPC and trigger the
conversation. You can also create your own, but there are many
different ways to go about it, so do some research first or try one
of the mentioned plugins.
Why implement this? Many games have players or characters that
speak, whether it’s through text or audio, so adding a dialogue
system will be a boon to delivering all that information, whether
it’s narrative or tutorial.

6. Challenge: Add visual effects (VFX) to the mushrooms that
float in the world:
Possible use cases:
Conveying a narrative or gameplay mechanic

Adding flair to character animations
Ge�ing started: Add a 2D particle system to the collectible
mushroom scene and explore the different se�ings for it.
Why implement this? VFX can add polish and make a game feel
dynamic and responsive. Whether the VFX is from an item in
the world meant to draw the player’s a�ention or the result of a
cool move the player performs, VFX.

Cameras
Creating and managing cameras adds a lot to the immersion of
games. Beyond them being the only way we see into the game
world, they’re also pivotal in cutscenes and

1. Challenge: Add a camera shake to juice up your game without
using a plugin:
Possible use cases:
When an in-game environment change occurs
When activating a specific item
When something happens to the player
Ge�ing started: Map a key to move the camera in one direction
and then back to its starting point.
Why implement this? Camera shake is a simple way to add
immersion and feedback to your game at a very low cost of time
and assets. It requires only some knowledge about the world
space of your game and how cameras behave in Godot. Not
only is this a useful feature for player feedback, but it can also
be integral to cutscenes or gameplay.

2. Challenge: Pan the first level of your game like an
introductory cutscene:
Possible use cases:
Showing player goals
Creating dynamic cutscenes
Showing different points of view in games
Switching player views by toggling between two characters
Ge�ing started: Create a script to lerp a camera between two
points.
Why implement this? This can be a great way to introduce goals
that exist in levels for players. It can be used to highlight points
on a map or in a world for onboarding or as points of interest.
Being able to move cameras fluidly makes it much easier to
highlight what players need to know about to be successful in
the game.

3. Challenge: Add the ability to zoom in on your player
character:
Possible use cases:
Show off cosmetics in-game
For photo mode with characters
Useful tools in strategy games when examining maps
Ge�ing started:
Why implement this? Regardless of the type of game you’re
creating, there is a benefit to allowing the player to zoom in on
various objects. Whether it’s a map for a strategy game or to
showcase cosmetics in a third-person action game, players love
looking at the details and artwork the game and world create.

4. Challenge: Add a toggle for switching from third-person to
first-person view:
Possible use cases:
Appreciate the character art on the player’s body
For a photo mode
Get a different, or be�er, view of the world
Solve environmental puzzles
Ge�ing started: Create another camera and have a key bind to
toggle between which camera is the current camera in the scene.
Why implement this? Adding the option between first and third
person views can allow players to see their player character in
the game world through a different lens.

5. Challenge: Create a split-screen for local cooperative play:
Possible use cases:
Allowing local co-op
Mechanics involving multiple cameras
Ge�ing started: Create a second player controller and a set of
player controls to control an additional player.
Why implement this? Local cooperative games are an excellent
way to step into creating multiplayer games, even if the
multiplayer is local. There is also an audience for local co-op
games, as people want to play games together, such as
successful titles including It Takes Two and Castle Crashers.

Shaders
1. Challenge: Create a shader effect for a piece of the UI:

Possible use cases:

Adding a burn/dissolve effect to items
Shift the tone of a piece of the UI to convey something different
narratively/mechanically
Ge�ing started: Check out Godot Shaders to get more practice with
shader code.
Why implement this? The feedback provided to players’ input can
incentivize players to continue playing. For example, when
opening a booster pack in Balatro, the burn effect of the booster
pack fading is very satisfying. Similar moments can be achieved
when adding that li�le bit of polish to your UI and through
shaders, much more easily than you think.

2. Challenge: Create a shader to stylize the sky or add clouds to
your existing sky:
Possible use cases:
Create a realistic-looking sky
Add clouds to your sky to give it character and depth
Ge�ing started: Explore how to create a custom shader script to
apply to the Sky material in your world environment.
Why implement this? There will probably be clouds and other
effects you’ll want to have included in your sky rather than a
generic blank, blue sky. It’s also an opportunity to explore more
of the shader code we touched on briefly earlier.

Miscellaneous
If you’re looking to push your skills further, these miscellaneous
challenges provide creative ways to experiment with Godot’s more
advanced systems:

1. Challenge: Make your game multiplayer by creating a
networked lobby and allowing one player to join your level:
Possible use cases:
Allow the creation of multiplayer games
Create lobbies for a multiplayer game with different modes
Ge�ing started: Go through Godot’s documentation relating to
networking, specifically the first tutorial in it, to create a lobby.
Why implement this? Understanding how networking works in
Godot opens the possibility of creating our own multiplayer
games. Creating a simple lobby is a good introduction to the
topic.

2. Challenge: Have your NPC navigate in your level by choosing
random points rather than predetermined ones:
Possible use cases:
Makes the world or NPCs feel more life-like and adds depth
Can confine an NPC to an area rather than a set of points
Could be used for other creatures or objects in a game, not just
NPCs
Ge�ing started: Look through the A* Star algorithm of
pathfinding and understand how it’s performed in the engine.
Why implement this? Implementing this adds a level of realism
that makes the world feel lived in. It’s also a great way to learn
an algorithm that’s seen in a lot of different components of
game development. Whether it’s making an NPC feel more alive
or creating an escort mission where the player must follow an
NPC, the usage of pathfinding is high!

3. Challenge: Use noise textures to create a heightmap for
terrain:

Possible use cases:
Create a variable terrain for a world
Create multiple maps of terrain quickly per level
Add biomes to your world
Ge�ing started: Explore the HeightMap3D node and understand
how noise textures create heightmaps.
Why implement this? This is a great opportunity to create a
dynamic world for the player to explore without having to
hand-craft each piece of the land. Once you have it in place for
generating the height of each piece of ground, you can extend it
to generate biomes and then specific objects in those biomes. It’s
a good space to start with terrain generation if that’s something
that interests you.

While this challenge list is not exhaustive, it’s a deeper dive into all
the topics we’ve discussed in this book. Ideally, these challenges will
lead you to discover more ways to leverage the usage of Godot in
your projects.

Summary
If you’re reading this, then you’ve made it to the end of both the
chapter and the book. Thank you for being on this journey with me
as we explored Godot, C#, and the relationship between the two.
While we didn’t cover everything around these three topics, we did
cover a substantial amount, such as writing C# scripts for Godot,
understanding Godot’s node system and how it uses resources, and
how both Godot and C# interface with each other. Let’s take a
moment and review what you’ve accomplished in depth.

In this first part of this book, we spent time ge�ing our ducks in a
row. We spent time downloading the tools we’d need to develop
with Godot in C# and configured our environment in a way suitable
for us. After that, we dabbled briefly in computer science theory,
discussing project structure and how best to organize our own.

The second part of the book is where we began creating our player
controller and developing our level. At this point, the project came
alive, and we were able to create a player to run around our world.
We expanded that world by creating a UI and adding audio. We
went further with our world and created an NPC to roam it and
lighting to reflect all that we created before. Having multiple
systems in place, we spent time refining them and discussing the
importance of accessibility in game development.

With our project in a good place to pause and reflect, we explored
the Godot community and the myriad of resources available through
game jams, plugins, and other Godot content creators. The last piece
of this project provided you with a challenge list for you to continue
your Godot journey in a way that’s best for you.

Good luck, and please share your projects with the Godot
community at large!

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this

http://packtpub.com/unlock

book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

14

Unlock Your Exclusive Benefits

Your copy of this book includes the following exclusive benefits:

 Next-gen Packt Reader

 DRM-free PDF/ePub downloads

Follow the guide below to unlock them. The process takes only a few
minutes and needs to be completed once.

Unlock this Book’s Free Benefits in
3 Easy Steps

Step 1
Keep your purchase invoice ready for Step 3. If you have a physical
copy, scan it using your phone and save it as a PDF, JPG, or PNG.

For more help on finding your invoice, visit
https://www.packtpub.com/unlock-benefits/help.

Note: If you bought this book directly from Packt, no
invoice is required. After Step 2, you can access your
exclusive content right away.

https://www.packtpub.com/unlock-benefits/help

Step 2
Scan the QR code or go to
packtpub.com/unlock.

On the page that opens (similar to Figure 14.1 on desktop), search for
this book by name and select the correct edition.

Figure 14.1: Packt unlock landing page on desktop

Step 3

http://packtpub.com/unlock

After selecting your book, sign in to your Packt account or create one
for free. Then upload your invoice (PDF, PNG, or JPG, up to 10 MB).
Follow the on-screen instructions to finish the process.

Need help?
If you get stuck and need help, visit
https://www.packtpub.com/unlock-
benefits/help for a detailed FAQ on
how to find your invoices and more.
This QR code will take you to the help
page.

Note: If you are still facing issues, reach out to
customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://mailto:customercare@packt.com/

Appendix: Transitioning from
Godot 3 to Godot 4

Upgrading any project to a newer version of a tool can be a daunting
and difficult task. However, the Godot community has done an
excellent job of providing documentation to help users navigate the
upgrade process. Alongside this, they have kept excellent and
transparent records of the changes implemented in the engine. In
this chapter, we’ll be talking about how to transition from Godot 3 to
Godot 4.

In this process, it’s a boon to us, as users, that the Godot Engine is
open source. It’s possible to follow along on GitHub and watch
changes be approved in real time, as well as seeing what the
community is interested in pushing forward with new versions of
the engine. With that in mind, there are a multitude of
improvements. Some will require new workflows, while others are
quality-of-life improvements.

To be�er understand this, we’ll be breaking down some differences
between Godot 3 and Godot 4. The goal of this chapter is to be able
to make a more informed decision on whether you should transition
to the newer engine version. As we go through this chapter, we will
assume that an upgrade is wanted or needed and provide the
necessary steps and changes to do so.

Our goals for this chapter are as follows:

Analyzing engine version changes
Discovering what’s in Godot 4
Preparing for an upgrade
Using the project upgrade tool

Technical requirements
For this chapter, the technical requirements are the same as in
Chapter 1.

All the code from this chapter is available in the GitHub repository
here: https://github.com/PacktPublishing/Game-
Development-with-Godot-and-C-.

Analyzing engine version changes
While we won’t cover everything that’s changed from Godot 3 to
Godot 4, we can look at the largest systems impacted. This will be a
brief overview to highlight what is new, what’s changed, and what
is completely removed. Throughout this section, we’ll be referencing
the Godot documentation quite a bit. If you’re ever in doubt about
what’s available in an engine version, refer to the documentation.

Much like how anyone can contribute to the source code of the
Godot Engine, so too can folks contribute to the Godot
documentation. If you discover something in the engine that’s not
covered in the documentation, you should consider adding it. The
odds are pre�y good that if you are looking for the information,
someone else is too! To learn how to contribute to the

https://github.com/PacktPublishing/Game-Development-with-Godot-and-C-

documentation, you can go to the GitHub repository here:
https://github.com/godotengine/godot-docs.

The Godot documentation is regularly updated by the community
and is often a great starting point for almost anything relating to the
engine, including upgrading from Godot 3 to Godot 4. Here, the
Godot community highlights the changes from Godot 3 to Godot 4:
https://docs.godotengine.org/en/stable/tutorials/migrat
ing/upgrading_to_godot_4.html.

The two important notes that stand out to me are the following:

Godot 3 is stable and has a long-term support (LTS) status.
Godot 3 has a lower likelihood of crashing or having
unexpected output. However, Godot 4 has all the new features
and bug fixes that 3 doesn’t. Note that Godot 4 will have a
longer support period than 3 did, which means that ge�ing
familiar with this version right out of the gate is a huge benefit.
There is also be�er error reporting from the engine to be�er
troubleshoot issues that might be occurring.
Godot 4 changed to utilize the .NET SDK, and currently,
exporting C# projects to iOS, Android, and HTML5 is not
possible. While initially this may seem like a huge drawback for
C# developers, the Godot community has stated that support
will be implemented in later 4.x versions of Godot. The .NET
support means there is more access to newer C#
implementations, which, long term, will outweigh the lack of
platform support that’s currently there. Note that exporting to
iOS, Android, or HTML5 is still possible in the GDScript

https://github.com/godotengine/godot-docs
https://docs.godotengine.org/en/stable/tutorials/migrating/upgrading_to_godot_4.html

version, just not in the C# one. However, inclusions of this are
planned in Godot 4’s roadmap.

For a more detailed overview, let’s look at the differences between
each version of the engine by the various systems included in it:

Figure Appendix.1: Differences between Godot 3 and Godot 4

It cannot be overstated that upgrading from Godot 3 to Godot 4 will
be an undertaking. The amount of time is dependent on the size and
systems of the project. Since much of the engine was refactored, the
way components are processed will be vastly different from 3 to 4.

Thankfully, Godot will do some of the work for you. For example,
some of the nodes in Godot 3 are named differently in Godot 4.
What’s called a Spatial node in Godot 3 is called Node3D in Godot

4. This renaming affects many scenes and scripts, but Godot
automatically updates older node names when opening the project
in Godot 4.

For more information about the changes to Godot from version 3 to
4, see https://godotengine.org/article/godot-4-0-sets-
sail/.

We can’t tell you whether it’s worth upgrading your project. What
we can tell you is what it will take to upgrade the project. Consider
the amount of technical debt you’re willing to take on if you’re
working to tight deadlines. If it’s a passion project or a game jam,
then consider the merits of upgrading or even recreating the project
in Godot 4.

If you don’t want to upgrade to Godot 4, that’s completely
understandable. Support for Godot 3.x has continued since Godot
4’s release, and the community has stated that they plan to backport
many compatible features to their LTS release of Godot 3, which is
Godot 3.6. Don’t feel too pressured to upgrade if some systems are
too different or removed, or if it doesn’t fit your current project.

Looking ahead, we’ll now take a li�le bit of a deeper dive into what’s
new in Godot 4. We’ll look at what systems have been rewri�en and
will be more difficult to upgrade, as well as which systems have
remained the same and which ones have been completely removed.

Discovering what’s in Godot 4
I’ve mentioned that there have been significant changes from Godot
3 to Godot 4. There has been core engine refactoring, new renderers

https://godotengine.org/article/godot-4-0-sets-sail/

for graphics, different node names, and so on. Let’s take a moment
and dive into some of the biggest changes to make a be�er
assessment of how long upgrading to Godot 4 may take and what
systems might be most impacted.

2D and 3D rendering
One of the biggest and long-awaited improvements to Godot has
been its renderer. Godot’s renderer is now in Vulkan, having
migrated from OpenGL, which provides be�er performance for
things such as shading, lighting, and shadows, plus be�er utilization
of your CPU and GPU.

On the 2D side of things, the Godot community has not forgo�en
mobile or low-end devices. They have wri�en their own renderer
that is based on OpenGL. It can be used in 3D environments but has
limits.

There is also support for AMD’s Fidelity FX Super Resolution (FSR
1.0) and plans for support for FSR 2.0. If you’re unfamiliar with FSR,
it allows games to be run at a lower resolution and then uses
upscaling to fill in the details. Even though it’s made by AMD, it can
be utilized by both AMD and NVIDIA graphics cards.

Also noted in the release of 4.0 is the goal of creating a renderer for
DirectX 12 for be�er Windows and Xbox support.

Overall, the options available when it comes to rendering in Godot 4
make it extremely viable for multiple platforms.

TileSet and Tilemap editors

If you’re a 2D developer, then the complete overhaul to the tilemap
and TileSet editor will be a huge change in your pipeline. The
tilemap system is how tiles are painted in environments, while the
TileSet editor is what allows marking various tiles for physics and
layering the tiles to add depth and foreground. The system has been
completely rewri�en from scratch and is a great upgrade and
addition to Godot 4. It allows faster 2D level design and requires less
work in a myriad of ways.

Some of the changes include the following:

Adding layers to distinguish between foreground and
background pieces
Randomized painting to allow decorative/environment pieces to
be added
Granular options for collision layers on tiles
Select tool for creating stamps to paint larger pieces
No tile gaps!

With an entirely new system for creating and designing 2D levels, it
is exciting to think about the added support and fixes that may come
along in a future version of Godot 4. This new system is an excellent
addition and one I personally love when teaching or doing game
jams.

Shaders and VFX
Something that will benefit both 2D and 3D developers is the
improvement on the shaders and visual effects side of the engine.

The two exciting improvements we’ll talk about are the volumetric
fog nodes and improved shader language.

Volumetric fog has been added, with its own node, FogVolume, for
placing the fog in specific locations within your environment. Along
with this, both the Shader Editor and Extended Shader Language
(ESL) have received a lot of updates to make them more accessible.
Within ESL, new syntax features have been included that we will
explore later in the book.

Other interesting components that have been added or improved on
the VFX side are the following:

Decals: Stamping materials over other materials to make objects
in your environment look more realistic or add depth to the
world you’re creating
Sky shaders: These special types of shaders allow users to draw
sky backgrounds and update them dynamically
GPU-based particles: These particles appear more life-like in
that they have trails and collisions and can interact with objects
in the environment, such as bouncing off surfaces
Noise filters: Additional noise filters have been added that aid
in procedurally generating content and making spaces feel more
dynamic

One last thing to note about shaders in Godot 4 is the fact that the
way shader files are named and stored has been augmented. In
Godot 3, two file extensions for shaders exist, while in Godot 4, there
is only one that is now supported. This will be important when
preparing to upgrade our project, which we will discuss later.

Editor UX
The Godot editor itself has had some major overhauls when it comes
to navigating it and interacting with its various systems. One major
change is that Godot now supports multiple windows. This may
seem trivial at first, but when working on multiple monitors or
having a large list of properties on an object, it is very convenient. To
enable multiple-window support, we can click the three dots that are
next to any dock and select the Make Floating bu�on, as seen in
Figure Appendix.2.

Figure Appendix.2: Creating multiple windows in Godot

It’s exciting to see the changes from Godot 3 to Godot 4, especially
since we’ll be utilizing quite a few of them in the following chapters.
Now that we’re aware of some of these big system overhauls, let’s
step through what needs to happen to our project to prepare for
upgrading to Godot 4.

Preparing for an upgrade

If you’ve go�en this far and have decided to upgrade your project,
there are some important steps that you should take and know about
beforehand. While you don’t have to take these steps, it will make
upgrading smoother and more enjoyable for you as a developer.

Creating a backup
The first thing is having a backup of the current project. If your
project is housed in something such as a GitHub repository, make
two new branches from it:

The first would be a preserved Godot 3 version of the project as
it is. This allows you to continue development on it if you
choose to upgrade and don’t like the changes or don’t have the
time to update your project to accommodate those changes.
The second branch would be for upgrading, which you could
then merge once you’ve thoroughly tested it.

In this way, you preserve the work you’ve done and allow yourself
to see the time and effort it would take to upgrade to Godot 4.

Updating nodes
As we’ve mentioned in previous chapters, every object in a Godot
scene is derived from a Node object. Earlier in this chapter, we also
mentioned that some node names have been changed to be�er reflect
the type of node that they are. There is one more area where nodes
have changed, and this is related to tracking time and using tweens.
Let’s break down what this means and what has changed.

Tweens
Tweens are a useful tool when it comes to animating objects.
Specifically, tweens animate objects dynamically and create smooth
animations for when we don’t know where an animation might end.
In previous versions of Godot, tweens were housed under a separate
node that had to be connected to the node you wanted to animate.
However, the tweening system has been rewri�en in Godot 4 to be
easier to integrate with other nodes:

Figure Appendix.3: The Godot documentation page for tweens

In Figure Appendix.3, function calls such as TweenProperty can be part
of a script that’s on the object you want to tween. Previously, you
had to create separate nodes to create and trigger tweens. Now,
tweens are created, managed, and destroyed in the script and are
much more flexible when it comes to their usage. With this new
system, tweening is extremely easy, and there are additional
functions in the system to support things such as easing the tween
and overlapping multiple tweens.

For more information on tweens and the Tweener object, you can find
the documentation here:
https://docs.godotengine.org/en/stable/classes/class_tw
eener.html#class-tweener.

https://docs.godotengine.org/en/stable/classes/class_tweener.html#class-tweener

Tracking time
Keeping track of time is often a critical component of game
development. Whether it’s tracking a time challenge or managing a
day/night cycle, accessing time is a common and necessary feature.

In Godot 3, time functions were only accessible in OS functions, but
now, in Godot 4, they have their own Time object.

When migrating from Godot 3 to Godot 4, it is important to make a
note anywhere that functions relating to time are called, since they
are now their own object in Godot. Noting this change in your
project is a proactive step in upgrading so as not to further take
away from development time.

More information on the Time class can be found in the
documentation here:
https://docs.godotengine.org/en/stable/classes/class_ti
me.html#class-time.

Renaming shaders
In Godot 4, shaders have a different file extension. Previous versions
of Godot supported both .shader and .gdshader . However, only
support for .gdshader is carried into Godot 4. Reviewing the existing
shaders in your project is another proactive step in ensuring a
smooth transition from Godot 3 to Godot 4.

With these few steps taken to prepare for an upgrade to Godot 4,
there is not much else left to do except one of two things:

You can use Godot’s project converter tool (which we will
discuss in the next section)

https://docs.godotengine.org/en/stable/classes/class_time.html#class-time

You can continue development in Godot 3.6 LTS

In the next section, we look at utilizing the project upgrade tool and
note common errors you’re likely to encounter when upgrading.
These errors will most likely be from systems that have been
completely rewri�en and, therefore, there is no easy transition for
changing them except manually.

Using the project upgrade tool
Along with the great documentation and videos from well-known
Godot contributors, there is also the project upgrade tool. When
Godot 4 was initially released, the tool was a standalone component
that you had to use outside of the Godot Engine, but thanks to the
wonderful community, it has now been merged into the engine.

Let’s go through the steps, using an example game of mine. The
source code for the game is included in the book’s repository, which
has been linked in the Technical requirements section.

I’ve left a game jam project folder in the project’s repository called
convert-project . If you aren’t familiar with what game jams are, they
are small prototypes created in X amount of time and centered
around a theme or various challenges.

Importing the project
Once you’ve downloaded the ZIP file, you can open the Godot
Engine and click the Import bu�on that’s on the right-hand side of
Project Manager, as seen in Figure Appendix.4:

Figure Appendix.4: Available bu�ons in Godot 4 from the Project Manager

As soon as you click the Import bu�on, a prompt will appear asking
whether you’d like to convert the project to Godot 4. There are two
bu�ons at the bo�om – Convert Full Project and Convert
project.godot Only. Click Convert Full Project.

Figure Appendix.5: Project conversion tool prompt in Godot 4

Note

We would only suggest selecting the Convert
project.godot Only bu�on for specific use cases, such
as the conversion tool failing.

Godot will then confirm that you want to upgrade the project with
another prompt. Once we click OK, the project should now be in our
project list, and we can open it up.

Figure Appendix.6: Confirmation on converting the project to Godot 4

Once the conversion is completed, you’ll be able to review
everything. Scenes and IDs for resources should be updated to the
correct Godot 4 terminology. As Figure Appendix.6 shows, it will still
require you to go through the project piece by piece to make sure
everything is functioning as it was in Godot 3. It’s hard to say
whether you should upgrade, depending on how far into the project
you are, but either way, Godot is actively supporting both options
until further notice.

Get This Book’s PDF
Version and Exclusive
Extras
Scan the QR code (or go to
packtpub.com/unlock). Search for this
book by name, confirm the edition, and
then follow the steps on the page.

Note: Keep your invoice handy. Purchases
made directly from Packt don’t require an
invoice.

http://packtpub.com/unlock

packtpub.com

Subscribe to our online digital library for full access to over 7,000
books and videos, as well as industry leading tools to help you plan
your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free
technical articles, sign up for a range of free newsle�ers, and receive
exclusive discounts and offers on Packt books and eBooks.

https://packtpub.com/
https://www.packtpub.com/

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books
by Packt:

Godot 4 for Beginners

Robert Henning

ISBN: 978-1-83620-308-7

Navigate and master the Godot 4 interface effectively
Utilize nodes and scenes for structured game development
Create dynamic 2D and immersive 3D game environments
Manipulate lighting to enhance game visuals
Script game mechanics using GDScript

https://www.packtpub.com/en-us/product/godot-4-for-beginners-9781836203087

Implement key elements such as players, enemies, and
collectibles
Design engaging levels and manage game states

Learning GDScript by Developing a Game with Godot 4

Sander Vanhove

ISBN: 978-1-80461-698-7

Develop your GDScript 2.0 programming skills from basic to
advanced, emphasizing code cleanliness
Harness Godot 4’s integrated physics engine to control and
manipulate in-game objects
Design a vibrant and immersive game world by seamlessly
integrating a diverse array of assets
Master the art of processing input from various sources for
enhanced interactivity
Extend the reach of your game by learning how to export it to
multiple platforms
Incorporate simple multiplayer functionality for a dynamic
gaming experience

https://www.packtpub.com/en-us/product/learning-gdscript-by-developing-a-game-with-godot-4-9781804616987

Packt is searching for authors like
you
If you’re interested in becoming an author for Packt, please visit
authors.packt.com and apply today. We have worked with
thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

https://authors.packt.com/

Share your thoughts
Now you’ve finished Game Development with Godot 4 and C#, we’d
love to hear your thoughts! If you purchased the book from Amazon,
please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will
help us make sure we’re delivering excellent quality content.

https://packt.link/r/1805124137

Index

Symbols
.NET SDK

downloading 5

A
accessibility 296, 297

Settings scene, updating 303-305

Settings UI, revamping 297-302

tabs, programming 305-308

anchors 165
AnimationNode types

reference link 91

animations 88
animation tree

AnimationTree node, creating 92, 93

jumping animation, adding 88-91

navigating 91

walking animation, adding 88-91

AnimationTree node
creating 92, 93

jumping 97, 98

walking 93-97

Aseprite Wizard
reference link 360

AsRelative() function 312
assets

character model, importing 54-56

importing 54

textures, importing 56, 57

audio buses
adding 222, 223

effects, implementing 223, 224

Master audio bus 220-222

working with 220

AudioListener nodes 219
AudioStreamPlayer 219
AudioStreamPlayer node

setting up 224-227

autonomous movement
adding 253, 254

Axis-Aligned Bounding Box (AABB) 154

B
binary serialization 309
blocking out 75

Blocktober
reference link 76

C
camera

clamping 84

configuring 71-74

camera movement 78
camera, clamping 84

conversion function, creating 82, 83

Mouse Mode, setting 79

mouse, panning with 80, 81

player, moving with 84-88

Camera Shake for C#
reference link 357

C# environment, with Godot 19
configuration 19, 20

IDE configuration, for Godot debugging 21-26

Chickensoft 363
C#, in Godot 4

changes, reviewing 18, 19

Close button
adding 212-214

cohesion 45
collectibles

creating 141

gathering 141

model, setting up 141-144

multiple collectibles, creating 149-152

player collisions, checking 147-149

script, adding to mushroom object 145, 146

collisions
adding 115

adding, manually to imports 116-119

gathering, after placements 120-123

composition 10, 145
concave collision shapes 122
ConfigFile

reference link 310

container 185
contextual keywords 228
control nodes 161-168
conversion function

creating 82-84

convex collision shapes 122
coupling 44
CreateTween() function 311
C# script

adding, to Player scene 33-39

D
day/night cycle

creating 282-293

DirectionalLight node
adding 274-279

E
editor UX 396
engine version

analyzing 392-394

environment
selecting 5, 6

exporting process 318
export templates 318

downloading 318-329

reference link 322

Extended Shader Language (ESL) 395

F
first level

designing 123-131

FogVolume 395
ForestDweller.cs

code, adding to 259-263

FX Super Resolution (FSR 1.0) 394

G
game

previewing 60

uploading, to itch.io 331-340

game jams 368-370
submitting 370-372

game physics
collision layers 138

masks 138

preparing 138-141

GDQuest
reference link 364

GetTree() function 194
Git 48
GitHub 57

pushing, to repository 58, 59

GitHub repository
GitHub account, creating 49-51

GitHub Desktop, downloading 51-54

setting up 48, 49

GitLens 54
Godot

audio nodes 218, 219

configuring, for C# 19, 20

groups, creating 263-267

IDE, configuring for debugging 21-26

lighting node, discovering 272-274

Godot 4
2D and 3D rendering 394

C# changes, reviewing 18, 19

discovering 394

editor UX 396

installing 4, 5

project upgrade tool, using 399-401

Shaders and VFX 395

Tilemap editor 395

TileSet editor 395

Godot 4, upgrade
backup, creating 397

nodes, updating 397, 398

preparing 396

shaders, renaming 398

godot_book_exports
exporting 329-331

Godot communities and creators 361
Chickensoft 363

GDQuest 364

Godot Wild Jam 362

Godot community 347
developer contribution 347

documentation contribution 352, 353

Godot community, developer contribution
bugs, reporting 348, 349

open issues 350-352

Godot Engine 6, 10, 11
bottom panel 14

download link 4

features 7

FileSystem dock 12, 13

functionality 8, 9

History tab 14

Inspector dock 14

Node tab 14

reference link 347

repository, navigating 342-347

Scene/Import dock 12

screen navigator 12

Viewport 12

Godot Engine, challenge list
cameras 380, 381

exploring 373

juice 373

level expansion 378, 379

miscellaneous 383

player-based 376, 377

shaders 382

user interface (UI) 374-376

Godot Firebase
reference link 359

Godot Ink 359
GodotSharpExtras 357, 358

reference link 357

Godot’s internal rendering
reference link 272

Godot Wild Jam (GWJ) 355
reference link 362

graphics programming language 132

I
inheritance 10
integrated development environment (IDE) 5
interpolation

reference link 86

itch.io
reference link 368

J

jam page
reference link 368

JavaScript Object Notation (JSON) 308
reference link 309

jumping animation
expanding 99, 100

K
keywords 228

L
level

rain, adding to 152-159

linear interpolation 86
long-term support (LTS) 346, 392

M
main menu

buttons, adding 185-188

buttons, connecting 192-194

creating 181-184

embedding 189-192

transition animation, adding 195-203

marker nodes
adding 255, 256

Master audio bus 220-222
Microsoft Build Engine (MSBuild) 5
mouse

panning with 80, 81

Mouse Mode
reference link 79

setting 79

mouse sensitivity 81
music

adding, to scenes 230-235

MusicSlider
music, tying to 235-240

N
navigation mesh (NavMesh)

creating 246-248

navigation nodes 244, 245
nodes 8
node structure 8
non-playable characters (NPCs) 243

autonomous movement, adding 253, 254

code, adding to ForestDweller.cs 259-263

code, adding to World.cs 256-258

creating 248-253

groups, creating in Godot 263-267

marker node, adding 255, 256

O
Object-Oriented Programming (OOP) 9
omnidirectional (omni) 271
OmniLight nodes

utilizing 279-281

OpenGL Shading Language (GLSL) 132

P
Parallel Split Shadow Mapping (PSSM 4) 276
physics step 36
Piskel 360, 361
pixels (px) 205
player

moving, with camera movement 84- 88

player controller 65
player, movement

script, attaching 74

test floor, adding 75-78

Player node structure
camera, configuring 71-73

creating 28-32, 66-71

Viewport, navigating 71

player settings

saving 308

saving, with binary serialization 309

saving, with ConfigFile 310

saving, with JSON 308

plugins
installing 354-356

reviewing 354

polymorphism 10
processor functions 132
project.godot file 318
project structuring 44

by asset 46

by feature 47

cohesion 45

coupling 44

project upgrade tool
using 399

Q
QueueFree() 214

R
red, green, or blue (RGB) 208
run ability

adding 100, 101

mapping 101, 103

run input, registering 104, 105

running animation
adding 105-108

S
S3 Texture Compression (S3TC) 325
scenes

music, adding to 230-235

scenes creation 27
Player node structure, creating 28-32

script, adding to Player scene 33-39

World scene node structure, creating 39-41

scene system 8
Screen-Space Indirect Lighting (SSIL) 129
serialization 9
settings page

making, functional 235

music, tying to MusicSlider 235-240

sound effects, tying to SFXSlider node 241

Settings screen
designing 203-205

navigating 211, 212

volume sliders, adding 205, 206

volume sliders, designing 207-210

SFXSlider
sound effects, tying to 241

Shader Editor 134, 395
shaders

used, for creating movement 132-138

signed distance field global illumination (SDFGI) 129, 272
software development kit (SDK) 318
sound effects

tying, to SFXSlider 241

sound effects, to UI
adding 224

AudioStreamPlayer node, setting up 224-227

coding 227-230

spring arm
reference link 73

StyleBoxEmpty 173
StyleBoxFlat 173
StyleBoxLine 174
StyleBoxTexture 173
switching scenes 313-315

T
Theme Editor

navigating 168, 169

Tilemap editor 395

TileSet editor 395
trimesh collision shapes 122
TweenProperty() 311
tweens

using 310-313

tweens tool 397

U
UI theme 168

creating 168

saved theme, reusing 179-181

Theme Editor, navigating 168, 169

UI type, creating 170-179

user interface (UI) 161, 374
type, creating 170-179

V
VBoxContainer 185
version control 48
VFX

components 395

Viewport
navigating 71

Visual Studio Code
URL 5

volumetric fog 395
Vulkan 394

W
World Assets

importing 112-115

World.cs
code, adding to 256-258

World scene node structure
creating 39-41

	Preface
	Part I: Understanding the Godot Engine and C#
	Introducing Godot 4
	Free Benefits with Your Book
	Technical requirements
	Installing Godot 4
	Downloading the .NET SDK
	Choosing an environment

	What is the Godot Engine?
	How does the Godot Engine function?
	Navigating the Godot Engine
	Scene/Import docks
	Viewport and screen buttons
	FileSystem dock
	Inspector/Node/History dock
	Bottom panel

	Summary

	Understanding How C# Works in Godot
	Technical requirements
	Reviewing the changes to C# in Godot 4
	Setting up your C# environment
	Configuring Godot for C#
	Configuring your IDE for Godot debugging

	Creating your first scenes and C# script
	Creating the Player node structure
	Adding a script to our Player Scene
	Creating the World scene node structure

	Summary

	Organizing and Setting Up a Project for a 3D Action Game
	Technical requirements
	Structuring our project
	Coupling and cohesion
	Structure by asset
	Structure by feature
	What’s good for Godot?

	Setting up a GitHub repository
	Creating a GitHub account
	Downloading GitHub Desktop

	Importing starter assets
	Importing the character model
	Importing textures

	Pushing to GitHub
	Previewing the game
	Summary

	Part II: Creating a Simple 3D Action Game
	Creating Our Player Controller
	Technical requirements
	Creating our player’s node structure
	Navigating the Viewport
	Configuring our camera

	Providing movement to our player
	Attaching a script
	Adding a test floor

	Moving the camera
	Setting Mouse Mode
	Panning with the mouse
	Creating a conversion function
	Clamping the camera
	Moving the player with the camera

	Adding walking and jumping animations with the animation tree
	Navigating animation trees
	Creating the AnimationTree node
	Walking
	Jumping

	Expanding our jumping animation
	Adding a run ability
	Mapping our run ability
	Registering run input
	Adding the running animation

	Summary

	Creating Our Game World
	Technical requirements
	Importing World Assets
	Adding collisions
	Manually adding collisions to imports
	Generating collisions after placement

	Designing our first level
	Creating movement with shaders
	Preparing game physics
	Creating and gathering collectibles
	Setting up our model
	Adding a script to the mushroom object
	Checking player collisions
	Creating multiple collectibles

	Adding rain to our level
	Summary
	Further reading

	Developing and Managing the User Interface
	Technical requirements
	Introducing control nodes
	Creating a UI theme
	Navigating the Theme Editor
	Creating our first UI type
	Reusing our saved theme

	Adding a main menu
	Adding our buttons
	Embedding our main menu
	Connecting menu buttons
	Adding a transition animation to the menu

	Designing a Settings screen
	Adding our volume sliders
	Designing our volume sliders
	Navigation on the Settings screen

	Adding a Close button
	Summary

	Adding Sound Effects and Music
	Technical requirements
	Understanding Godot’s audio nodes
	Working with audio buses
	The Master audio bus
	Adding audio buses
	Implementing audio effects

	Adding sound effects to the UI
	Setting up the AudioStreamPlayer node
	Coding our sound effects

	Adding music to our scenes
	Making our settings page functional
	Tying Music to our MusicSlider
	Tying sound effects to SFXSlider

	Summary

	Adding Navigation and Pathfinding
	Technical requirements
	Understanding navigation nodes
	Creating a navigation mesh
	Creating an NPC
	Adding autonomous movement
	Adding marker nodes
	Adding code to World.cs
	Adding code to ForestDweller.cs
	Creating groups in Godot

	Summary

	Part III: Expanding Our 3D Action Game and Additional Resources
	Setting Up Lighting in Godot
	Technical requirements
	Discovering Godot’s lighting nodes
	Adding a DirectionalLight node
	Utilizing OmniLight nodes
	Creating a day/night cycle
	Summary

	Understanding Accessibility and Additional Features
	Technical requirements
	Understanding accessibility
	Revamping our Settings UI
	Updating our Settings scene
	Programming our tabs

	Discovering Save systems
	Saving with JSON
	Saving with binary serialization
	Saving with ConfigFile

	Adding additional features
	Using tweens
	Switching scenes

	Summary

	Exporting Your Game
	Technical requirements
	Understanding what exporting is
	Downloading export templates
	Exporting our game to Windows
	Uploading our game to itch.io
	Summary

	Contributing to Godot and Additional Resources
	Technical requirements
	Navigating the Godot Engine repository
	Contributing to Godot
	Developer contributions
	Reporting bugs
	Understanding open issues

	Documentation contributions

	Reviewing useful plugins
	Installing plugins
	Camera Shake for C#
	GodotSharpExtras
	Godot Ink
	Godot Firebase
	Aseprite Wizard
	Piskel

	Highlighting Godot communities and creators
	Godot Wild Jam
	Chickensoft
	GDQuest

	Summary

	Next Steps as a Godot Developer
	Technical requirements
	Participating in game jams
	Submitting a game

	Exploring the challenge list
	Understanding juice
	User interface
	Player-based
	Expanding our world
	Cameras
	Shaders
	Miscellaneous

	Summary

	Unlock Your Exclusive Benefits
	Appendix: Transitioning from Godot 3 to Godot 4
	Technical requirements
	Analyzing engine version changes
	Discovering what’s in Godot 4
	2D and 3D rendering
	TileSet and Tilemap editors
	Shaders and VFX
	Editor UX

	Preparing for an upgrade
	Creating a backup
	Updating nodes
	Tweens
	Tracking time

	Renaming shaders

	Using the project upgrade tool
	Importing the project
	Get This Book’s PDF Version and Exclusive Extras

	Other Books You May Enjoy
	Index

